- Код статьи
- 10.31857/S0869813924080022-1
- DOI
- 10.31857/S0869813924080022
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 110 / Номер выпуска 8
- Страницы
- 1238-1252
- Аннотация
- Хроническое недосыпание (сон менее 6 ч в сутки) в связи с производственной необходимостью и снижением качества сна является эндемическим заболеванием в современном обществе. Хроническое недосыпание вызывает серьезные нейроповеденческие нарушения, сопряженные с необратимыми нейродегенеративными изменениями в головном мозге. Поиск фармакологических агентов способных снизить риск развития нейродегенерации в результате хронической потери сна является актуальной задачей биомедицины. Интраназальное введение глюкозо-регулируемого белка теплового шока 78 кДа (GRP78) оказывает нейропротективный эффект в модели болезни Паркинсона у крыс. Нейропротективный потенциал интраназально введенного GRP78 при хроническом недосыпании ранее не исследовался. Задача исследования – выяснить, способно ли профилактическое интраназальное введение GRP78 ослабить и/или остановить процесс нейродегенерации в голубом пятне в модели хронического ограничения сна (ОС) у крыс. Исследование проведено на 6-месячных самцах крыс популяции Вистар. Для депривации сна был применен валидизированный метод качающейся платформы в режиме: 3 ч лишения сна и 1 ч покоя непрерывно в течение 5 суток. Рекомбинантный белок GRP78 человека вводили интраназально за два дня до начала ОС и в течение 5 суток ОС. Клеточно-молекулярные изменения в голубом пятне при ОС и при введении GRP78 исследовались с помощью иммуногистохимии и вестерн-блоттинга. Показано, что хроническое ОС приводит к гибели 30% норадренергических нейронов в голубом пятне, которое было сопряжено с повышением уровней активированных каспаз-3, 9. Это свидетельствует о развитии апоптоза по митохондриальному пути. Признаков реактивного микроглиоза не обнаружено в модели хронического ОС у крыс. Мы продемонстрировали, что интраназально введенный GRP78 проникает и накапливается в норадренергических нейронах голубого пятна, это противодействует гибели нейронов по пути апоптоза. Полученные данные позволяют считать GRP78 потенциальным нейропротекторным средством для профилактики патологических последствий хронического недосыпания.
- Ключевые слова
- хроническое ограничение сна голубое пятно шаперон GRP78 HSPA5 нейродегенерация апоптоз
- Дата публикации
- 15.08.2024
- Год выхода
- 2024
- Всего подписок
- 0
- Всего просмотров
- 34
Библиография
- 1. Riemann D, Nissen C, Palagini L, Otte A, Perlis ML, Spiegelhalder K (2015) The neurobiology, investigation, and treatment of chronic insomnia. Lancet Neurol 14: 547–558. https://doi.org/10.1016/S1474–4422 (15)00021–6
- 2. Strygin KN, Poluektov MG (2017) INSOMNIA. Medical Council 52–58. https://doi.org/10.21518/2079–701X-2017–0–52–58
- 3. Schutte-Rodin S, Broch L, Buysse D, Dorsey C, Sateia M (2008) Clinical guideline for the evaluation and management of chronic insomnia in adults. J Clin Sleep Med 04: 487–504. https://doi.org/10.5664/jcsm.27286
- 4. Shan W, Peng X, Tan W, Zhou Z, Xie H, Wang S (2024) Prevalence of insomnia and associations with depression, anxiety among adults in guangdong, China: A large-scale cross-sectional study. Sleep Med 115: 39–47. https://doi.org/10.1016/j.sleep.2024.01.023
- 5. Ahn E, Baek Y, Park J-E, Lee S, Jin H-J (2024) Elevated prevalence and treatment of sleep disorders from 2011 to 2020: a nationwide population-based retrospective cohort study in Korea. BMJ Open 14: e075809. https://doi.org/10.1136/bmjopen-2023–075809
- 6. Hisler G, Muranovic D, Krizan Z (2019) Changes in sleep difficulties among the U.S. population from 2013 to 2017: results from the National Health Interview Survey. Sleep Health 5: 615–620. https://doi.org/10.1016/j.sleh.2019.08.008
- 7. Norell-Clarke A, Hagquist C (2017) Changes in sleep habits between 1985 and 2013 among children and adolescents in Sweden. Scand J Public Health 45: 869–877. https://doi.org/10.1177/1403494817732269
- 8. Costa A, Pereira T (2019) The effects of sleep deprivation on cognitive performance. Eur J Public Health 29: ckz034.096. https://doi.org/10.1093/eurpub/ckz034.096
- 9. Al-Abri M (2015) Sleep deprivation and depression: A bi-directional association. Sultan Qaboos Univ Med J 15: e4-e6.
- 10. Rosen I, Gimotty P, Shea J, Bellini L (2006) Evolution of sleep quantity, sleep deprivation, mood disturbances, empathy, and burnout among interns. Acad Med 81: 82–85. https://doi.org/10.1097/00001888–200601000–00020
- 11. Belenky G, Wesensten N, Thorne D, Thomas M, Sing H, Redmond D, Russo M, Balkin T (2003) Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose‐response study. J Sleep Res 12: 1–12. https://doi.org/10.1046/j.1365–2869.2003.00337.x
- 12. Pejovic S, Basta M, Vgontzas A, Kritikou I, Shaffer M, Tsaoussoglou M, Stiffler D, Stefanakis Z, Bixler E, Chrousos G (2013) Effects of recovery sleep after one work week of mild sleep restriction on interleukin-6 and cortisol secretion and daytime sleepiness and performance. Am J Physiol Endocrinol Metab 305: E890-E896. https://doi.org/10.1152/ajpendo.00301.2013
- 13. Van Dongen H, Maislin G, Mullington J, Dinges D (2003) The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26: 117–126. https://doi.org/10.1093/sleep/26.2.117
- 14. Lutsey P, Misialek J, Mosley T, Gottesman R, Punjabi N, Shahar E, MacLehose R, Ogilvie R, Knopman D, Alonso A (2018) Sleep characteristics and risk of dementia and Alzheimer’s disease: The atherosclerosis risk in communities study. Alzheimers Dement 14: 157–166. https://doi.org/10.1016/j.jalz.2017.06.2269
- 15. Pase M, Himali J, Grima N, Beiser A, Satizabal C, Aparicio H, Thomas R, Gottlieb D, Auerbach S, Seshadri S (2017) Sleep architecture and the risk of incident dementia in the community. Neurology 89: 1244–1250. https://doi.org/10.1212/WNL.0000000000004373
- 16. Owen J, Zhu Y, Fenik P, Zhan G, Bell P, Liu C, Veasey S (2021) Late-in-life neurodegeneration after chronic sleep loss in young adult mice. Sleep 44(8): zsab057. https://doi.org/10.1093/sleep/zsab057
- 17. Zhu Y, Fenik P, Zhan G, Somach R, Xin R, Veasey S (2016) Intermittent short sleep results in lasting sleep wake disturbances and degeneration of locus coeruleus and orexinergic neurons. Sleep 39: 1601–1611. https://doi.org/10.5665/sleep.6030
- 18. Zhang J, Zhu Y, Zhan G, Fenik P, Panossian L, Wang M, Reid S, Lai D, Davis J, Baur J, Veasey S (2014) Extended wakefulness: compromised metabolics in and degeneration of locus coeruleus neurons. J Neurosci 34: 4418–4431. https://doi.org/10.1523/JNEUROSCI.5025–12.2014
- 19. Aston-Jones G, Bloom F (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1: 876–886. https://doi.org/10.1523/JNEUROSCI.01–08–00876.1981
- 20. Benington J, Craig Heller H (1995) Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol 45: 347–360. https://doi.org/10.1016/0301–0082 (94)00057-O
- 21. Costa C, Manaa W, Duplan E, Checler F (2020) The endoplasmic reticulum stress/unfolded protein response and their contributions to Parkinson’s disease physiopathology. Cells 9: 2495. https://doi.org/10.3390/cells9112495
- 22. Naidoo N, Giang W, Galante R, Pack A (2005) Sleep deprivation induces the unfolded protein response in mouse cerebral cortex. J Neurochem 92: 1150–1157. https://doi.org/10.1111/j.1471–4159.2004.02952.x
- 23. Voronin MV, Abramova EV, Verbovaya ER, Vakhitova YV, Seredenin SB (2023) Chaperone-dependent mechanisms as a pharmacological target for neuroprotection. Int J Mol Sci 24: 823. https://doi.org/10.3390/ijms24010823
- 24. Gorbatyuk M, Gorbatyuk O (2013) The molecular chaperone GRP78/BiP as a therapeutic target for neurodegenerative disorders: A mini review. J Genet Syndr Gene Ther 4. https://doi.org/10.4172/2157–7412.1000128
- 25. Pazi M, Belan D, Komarova E, Ekimova I (2024) Intranasal administration of GRP78 protein (HSPA5) confers neuroprotection in a lactacystin-induced rat model of parkinson’s disease. Int J Mol Sci 25: 3951. https://doi.org/10.3390/ijms25073951
- 26. Guzeev MA, Kurmazov NS, Simonova VV, Pastukhov YuF, Ekimova IV (2021) Modeling of chronic sleep restriction for translational studies. SS Korsakov J Neurol Psychiatr 121(4–2): 6–13. https://doi.org/10.17116/jnevro20211214026
- 27. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. 6th ed. Elsevier. Amsterdam.
- 28. Manchanda S, Singh H, Kaur T, Kaur G (2018) Low-grade neuroinflammation due to chronic sleep deprivation results in anxiety and learning and memory impairments. Mol Cell Biochem 449: 63–72. https://doi.org/10.1007/s11010–018–3343–7
- 29. Hurtado-Alvarado G, Domínguez-Salazar E, Pavon L, Velázquez-Moctezuma J, Gómez-González B (2016) Blood-brain barrier disruption induced by chronic sleep loss: Low-grade inflammation may be the link. J Immunol Res 2016: 1–15. https://doi.org/10.1155/2016/4576012
- 30. Deurveilher S, Semba K (2019) Physiological and neurobehavioral consequences of chronic sleep sestriction in rodent models. Handbook Sleep Res 557–567. https://doi.org/10.1016/B978–0–12–813743–7.00037–2
- 31. Deurveilher S, Rusak B, Semba K (2012) Time-of-day modulation of homeostatic and allostatic sleep responses to chronic sleep restriction in rats. Am J Physiol Regul Integr Comp Physiol 302(12): R1411-R1425. https://doi.org/10.1152/ajpregu.00678.2011
- 32. Takemoto H, Yoshimori T, Yamamoto A, Miyata Y, Yahara I, Inoue K, Tashiro Y (1992) Heavy chain binding protein (BiP/GRP78) and endoplasmin are exported from the endoplasmic reticulum in rat exocrine pancreatic cells, similar to protein disulfide-isomerase. Arch Biochem Biophys 296: 129–136. https://doi.org/10.1016/0003–9861 (92)90554-A
- 33. Baek J-H, Mamula D, Tingstam B, Pereira M, He Y, Svenningsson P (2019) GRP78 level is altered in the brain, but not in plasma or cerebrospinal fluid in Parkinson’s disease patients. Front Neurosci 13: 697. https://doi.org/10.3389/fnins.2019.00697
- 34. Casas C (2017) GRP78 at the centre of the stage in cancer and neuroprotection. Front Neurosci 11: 177. https://doi.org/10.3389/fnins.2017.00177
- 35. Shields A, Thompson S, Panayi G, Corrigall V (2012) Pro-resolution immunological networks: binding immunoglobulin protein and other resolution-associated molecular patterns. Rheumatology (Oxford) 51: 780–788. https://doi.org/10.1093/rheumatology/ker412
- 36. Eggleton P, De Alba J, Weinreich M, Calias P, Foulkes R, Corrigall V (2023) The therapeutic mavericks: Potent immunomodulating chaperones capable of treating human diseases. J Cell Mol Med 27: 322–339. https://doi.org/10.1111/jcmm.17669
- 37. Zhu Y, Fenik P, Zhan G, Mazza E, Kelz M, Aston-Jones G, Veasey S (2007) Selective loss of catecholaminergic wake–active neurons in a murine sleep apnea model. J Neurosci 27: 10060–10071. https://doi.org/10.1523/JNEUROSCI.0857–07.2007
- 38. Somarajan B, Khanday M, Mallick B (2016) Rapid eye movement sleep deprivation induces neuronal apoptosis by noradrenaline acting on alpha1 adrenoceptor and by triggering mitochondrial intrinsic pathway. Front Neurol 7: 25. https://doi.org/10.3389/fneur.2016.00025
- 39. Leiva-Rodríguez T, Romeo-Guitart D, Herrando-Grabulosa M, Muñoz-Guardiola P, Polo M, Bañuls C, Petegnief V, Bosch A, Lizcano J, Apostolova N, Forés J, Casas C (2021) GRP78 Overexpression triggers PINK1-IP3R-mediated neuroprotective mitophagy. Biomedicines 9: 1039. https://doi.org/10.3390/biomedicines9081039
- 40. Bellesi M, de Vivo L, Chini M, Gilli F, Tononi G, Cirelli C (2017) Sleep loss promotes astrocytic phagocytosis and microglial activation in mouse cerebral cortex. J Neurosci 37: 5263–5273. https://doi.org/10.1523/JNEUROSCI.3981–16.2017
- 41. Wadhwa M, Kumari P, Chauhan G, Roy K, Alam S, Kishore K, Ray K, Panjwani U (2017) Sleep deprivation induces spatial memory impairment by altered hippocampus neuroinflammatory responses and glial cells activation in rats. J Neuroimmunol 312: 38–48. https://doi.org/10.1016/j.jneuroim.2017.09.003
- 42. Hall S, Deurveilher S, Robertson G, Semba K (2020) Homeostatic state of microglia in a rat model of chronic sleep restriction. Sleep 43(11): zsaa108. https://doi.org/10.1093/sleep/zsaa108
- 43. Hou J, Shen Q, Wan X, Zhao B, Wu Y, Xia Z (2019) REM sleep deprivation-induced circadian clock gene abnormalities participate in hippocampal-dependent memory impairment by enhancing inflammation in rats undergoing sevoflurane inhalation. Behav Brain Res 364: 167–176. https://doi.org/10.1016/j.bbr.2019.01.038
- 44. Xie L, Kang H, Xu Q, Chen M, Liao Y, Thiyagarajan M, O’Donnell J, Christensen D, Nicholson C, Iliff J, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342: 373–377. https://doi.org/10.1126/science.1241224
- 45. Lapshina KV, Ekimova IV (2024) Aquaporin-4 and Parkinson’s Disease. Int J Mol Sci 25: 1672. https://doi.org/10.3390/ijms25031672
- 46. Shokri-Kojori E, Wang G-J, Wiers C, Demiral S, Guo M, Kim S, Lindgren E, Ramirez V, Zehra A, Freeman C, Miller G, Manza P, Srivastava T, De Santi S, Tomasi D, Benveniste H, Volkow N (2018) β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci U S A 115: 4483–4488. https://doi.org/10.1073/pnas.1721694115
- 47. Ju Y-ES, Ooms S, Sutphen C, Macauley S, Zangrilli M, Jerome G, Fagan A, Mignot E, Zempel J, Claassen J, Holtzman D (2017) Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain 140: 2104–2111. https://doi.org/10.1093/brain/awx148
- 48. Lapshina KV, Guzeev MA, Ekimova IV (2016) Glucose-regulated protein Grp78 affects characteristics of sleep and thermoregulation in rats. J Evol Biochem Physiol 52: 161–167. https://doi.org/10.1134/S002209301602006X
- 49. Naidoo N, Casiano V, Cater J, Zimmerman J, Pack A (2007) A role for the molecular chaperone protein BiP/GRP78 in drosophila sleep homeostasis. Sleep 30: 557–565. https://doi.org/10.1093/sleep/30.5.557