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Микробиота и макроорганизм находятся в постоянном взаимодействии друг с дру-
гом. Симбионтная микробиота принимает участие в выполнении ряда важных физи-
ологических, биохимических и нейроэндокринных функций макроорганизма. Мета-
болическая активность микробиоты в желудочно-кишечном тракте (ЖКТ) помогает 
переваривать пищу, усваивать питательные вещества и извлекать энергию. Микро-
биота ЖКТ участвует в процессах метаболизма белков, жиров и углеводов, в процес-
сах глюконеогенеза и гликогенолиза, а также влияет на чувство голода и насыщения. 
Помимо этого, микробиоту часто рассматривают как метаболически активный «ор-
ган», поскольку мощность метаболических реакций микробиоты кишечника срав-
нима с таковой печени организма-хозяина. Микробиота продуцирует аутоиндукторы 
(кворум-чувствительные вещества), гормоны, нейромедиаторы, короткоцепочечные 
жирные кислоты, вторичные жирные кислоты, факторы роста, газообразные моле-
кулы и множество других активных веществ. Микробные метаболиты обеспечивают 
основную коммуникацию между организмом хозяина и его микробным сообщест-
вом и имеют огромное значение для нормального функционирования макроорганиз-
ма, начиная с внутриутробного развития и кончая процессами старения. Более того, 
изменение метаболической активности и/или соотношения разных видов микро-
организмов может приводить к различным метаболическим нарушениям организ-
ма-хозяина. Верно и  обратное, нарушение метаболизма организма-хозяина может 
приводить к  изменению видового состава микробиоты. В  данном обзоре описано 
влияние микробиоты и ее метаболитов на нейроэндокринные функции макроорга-
низма и описаны соответствующие механизмы этого влияния.
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ВВЕДЕНИЕ

Микробиота и макроорганизм (организм хозяина) представляют собой симбиоти-
ческую систему, в которой они постоянно взаимодействуют друг с другом. Симбионт-
ная микробиота принимает участие как в выполнении ряда важных физиологических 
функций макроорганизма, так и в регуляции психики человека [1–8]. Микробиота под-
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держивает биохимическое, метаболическое и иммунологическое равновесие макроор-
ганизма, необходимое для сохранения здоровья [1–3, 5, 7, 8]. 

Выделяют 4 основных биотопа у человека: желудочно-кишечный тракт (ЖКТ), в ко-
тором сосредоточено более 60% всей микробиоты, кожные покровы, дыхательные пути 
и урогенитальная система. В последнее время обнаружено наличие микробиоты и/или 
ее продуктов в местах, считавшихся стерильными, такими как кровь и сосуды [9].

Некоторые факторы могут влиять на состав микробиоты, например, такие как ин-
фекции, болезни, диеты и прием антибиотиков, хирургическое вмешательство, но, как 
правило, состав микробиоты стремится вернуться к  стабильному состоянию, харак-
терному до воздействия, как только неблагоприятные факторы исчезнут [4]. Следует 
отметить, что микробиота пожилых людей отличается от микробиоты молодых, что 
может быть следствием ухудшения состояния здоровья с возрастом. 

Кишечник населен микроорганизмами в  количестве 1013–1014, что в  десять раз 
больше количества человеческих клеток в нашем организме, и микробиом содержит 
в  150  раз больше генов, чем геном человека [7]. Такое количество генов позволяет 
микробиоте участвовать в  широком спектре биохимической и  метаболической ак-
тивности организма хозяина. Число видов бактерий сильно варьирует у  отдельных 
индивидуумов, однако считается, что микробиом взрослого человека состоит из бо-
лее чем 1000 видов и 7000 штаммов [10]. Среди бактерий преобладают в основном 
строгие анаэробы. Помимо бактерий в микробиом входят вирусы, простейшие, гри-
бы и археи. Микробиом в  значительной степени определяется двумя бактериальны-
ми типами: Bacteroidota (ранее Bacteroidetes) и  Bacillota (ранее Firmicutes). Другие 
типы: Pseudomonadota (ранее Proteobacteria), Actinomycetota (ранее Actinobacteria), 
Fusobacteriota (ранее Fusobacteria), Verrucomicrobiota (ранее Verrucomicrobia) и археи 
(Euryarchaeota) присутствуют в относительно низких количествах [11, 12]. 

МЕТАБОЛИТЫ МИКРОБИОТЫ

Метаболическая активность микробиоты в  ЖКТ помогает переваривать пищу, 
усваивать питательные вещества и  извлекать энергию. Микробиота ЖКТ участву-
ет в процессах метаболизма белков, жиров и углеводов, в процессах глюконеогенеза 
и гликогенолиза, а также влияет на чувство голода и насыщения [1, 3, 7, 8, 13]. По-
мимо этого, микробиоту часто рассматривают как метаболически активный «орган», 
который продуцирует аутоиндукторы (кворум-чувствительные вещества), гормоны, 
нейромедиаторы, короткоцепочечные жирные кислоты (КЦЖК), вторичные желчные 
кислоты (ЖК), факторы роста, газообразные молекулы и множество других активных 
веществ [1, 3, 5–8, 14–18] (табл. 1). 

Микробные метаболиты, вырабатываемые в кишечнике, обеспечивают основную 
коммуникацию между организмом хозяина и его микробным сообществом [3, 5, 6, 8, 
16]. Мощность метаболических реакций микробиоты ЖКТ кишечника сравнима с та-
ковой печени, поэтому микробиоту можно рассматривать как дополнительный орган 
макроорганизма [7, 25]. Некоторые микробные метаболиты могут проникать через 
кишечный барьер и в гораздо меньшей степени через гематоэнцефалический барьер 
(ГЭБ) [26–29].

Почти вся кровь, исходящая из пищеварительного тракта, проходит через воротную 
вену и попадает непосредственно в печень, которая нейтрализует и удаляет вредные ве-
щества, включая токсичные метаболиты микробиоты. Другое количество метаболитов 
микробиоты, которое попадает в общий кровоток либо без изменений, либо под дейст-
вием печеночных ферментов, превращаясь в биологически активные вещества [30], до-
стигает соответствующих органов-мишеней [6]. Помимо этого, микробиота и ее метабо-
литы могут стимулировать высвобождение гормонов из соответствующих клеток ЖКТ. 
Таким образом проявляется эндокринное действие микробиоты [5–7, 14]. Концентрация 
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Таблица 1. Различные метаболиты микробиоты, влияющие на метаболизм и функции 
макроорганизма *

Класс вещества Пример вещества Синтезирующие микроорганизмы

Нейротранс-
миттеры

Серотонин (5-HT) Escherichia coli, Rhodospirillum rubrum. 
Streptococcus faecalis, Candida guillermondii, 
Bacillus cereus, Bacillus subtilis, 
Staphylococcus aureus, Enterococcus faecalis

Норадреналин Saccharomyces cerevisiae, Bacillus subtilis, 
Staphylococcus aureus, Proteus vulgaris. 
Патогенные штаммы: Escherichia coli

Дофамин Bacillus cereus, Bacillus subtilis, E. coli, 
Staphylococcus aureus, Lactococcus, 
Lactobacillus, Streptococcus 

Гистамин Lactobacillus, Lactococcus, Clostridium, 
Streptococcus, Bacteroides, Enterococcus

ГАМК Lactobacillus, Bifidobacterium, 
Propionibacterium, Enterococcus, 
Leuconostoc, Pediococcus, Bacteroides

Ацетилхолин Lactobacillus, E. coli, Staphylococcus aureus, 
B. subtilis 

Глутамат Corynebacterium glutamicum, Brevibacterium 
lactofermentum, Brevibacterium flavum, 
Lactobacillus

Прекурсоры 
нейроактивных
веществ

Триптофан, 
L‑дофа (леводопа)
Кинурени́н

E. coli, Bifidobacterium

КЦЖК Ацетат, бутират, пропионат, 
валерат

Bacteroides, Bifidobacterium, 
Propionibacterium, Eubacterium, 
Lactobacillus, Clostridium, Roseburia, 
Prevotella 

Метаболиты 
холина

Триметиламин,
диметилглицин

Anaerococcus, Clostridium, Edwardsiella, 
Escherichia fergusonii, Proteus, Providencia

Аминокислоты Аспарагиновая, 
глутаминовая, ГАМК, 
глицин, триптофан, валин 

E. coli, Lactobacillus, Corynebacterium 
glutamicum, Brevibacterium lactofermentum, 
Brevibacterium flavum, Bifidobacterium

Гормоны** Пептид тирозин-тирозин 
(PYY),
грелин, лептин,
глюкагон-подобный пептид, 
инсулин, кальцитонин, 
гонадотропин, окситоцин

Lactobacillus, E. coli, Saccharomyces 
cerevisiae, Staphylococcus, Progenitor 
cryptocides

Пептиды*** Бета-эндорфин, 
инсулин, нейротрофические 
факторы и факторы роста

E. coli, Lactobacillus
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биологически активных веществ микробиоты может достигать значительных величин 
и существенно различаться у разных людей [6]. Основное влияние микробиоты на ма-
кроорганизм осуществляется через метаболиты и физиологически активные вещества, 
производимые как микробиотой, так и макроорганизмом в ответ на присутствие микро-
биоты и ее метаболитов. Учитывая столь многогранное влияние микробиоты на макро-
организм, изучают отдельные оси взаимодействия микробиоты и систем макроорганиз-
ма, такие как нервная, сердечно-сосудистая, иммунная, скелетная, мочевыделительная 
система, легочная и эндокринная. Также рассматривают влияние микробиоты на отдель-
ные органы и ткани, например, такие как печень, почки и кожа. Микробиота также уча-
ствует в эпигенетической регуляции генов макроорганизма [31, 32].

В настоящем обзоре представлены данные по нейроэндокринному влиянию микро-
биоты и  ее метаболитов на  макроорганизм и  описаны соответствующие механизмы 
этого влияния. 

РЕЦЕПТОРЫ РАСПОЗНАВАНИЯ КЛЕТОЧНЫХ СТРУКТУР 
МИКРООРГАНИЗМОВ

Помимо синтеза гормоноподобных соединений, микроорганизмы имеют специфи-
ческие рецепторы для связывания подобных веществ. Рецепторы микроорганизмов 
позволяют им обмениваться специальными молекулярными сигналами (аутоиндукто-
рами) для большей выживаемости. Данный феномен кооперативной чувствительности 
получил название (quorum sensing (QS) или чувство кворума). QS позволяет регулиро-
вать экспрессию генов и  численность микробной популяции посредством коммуни-
кации с аутоиндукторами [33–39]. QS у патогенных бактерий связан с образованием 
биопленок и  регуляцией вирулентности [1, 34]. Интересным является тот факт, что 

Класс вещества Пример вещества Синтезирующие микроорганизмы

Стероиды Эстрадиол,
Прогестерон

Saccharomyces cerevisiae, Candida albicans, 
Coccidioides immitis, Mycobacterium, 
Rhodococcus, Gordonia

Липиды Конъюгированные жирные 
кислоты,
холестерин,
фосфатидилхолины,
триглицериды, ЛПС

Clostridium, бактерии из Bacteroidota, 
Bacillota

Неорганические 
соединения

Оксид азота (NO)
H2S, CO2, CH4

E. coli, B. subtilis, Lactobacillus, Lactococcus, 
Streptococcus, Pseudomonas stutzeri, 
Pseudomonas aureofaciens, Thiobacillus 
denitrificans, Dictyostellium discoideum

Витамины Витамины группы В, 
витамин К

Lactobacillus, B. subtilis, Ashbya gossypii 

Примечание. * [1, 18–24]. В таблице представлены наиболее известные и идентифицированные метаболиты. 
Помимо этого, существуют базы данных, в которых подробно описаны метаболиты микробиоты, определяе-
мые современными газ-хромато-масс-спектрометрическими и другими методами [24]. ** Кишечная микро-
биота может стимулировать высвобождение некоторых гормонов из эндокринных клеток макроорганизма 
(см. ниже). *** Образование некоторых пептидов также может стимулироваться микробиотой.

Таблица 1. Окончание
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макроорганизм посредством своих рецепторов может воспринимать QS сигналы и тем 
самым выстраивать свой ответ и защиту организма-хозяина на вторжение патогенов 
[37, 40]. Например, арил-гидрокарбоновый рецептор (AhR) организма хозяина спосо-
бен определить тип и  количество QS молекул и  таким образом помогать защищать 
макроорганизм от инфекций [40]. Однако соответствующие рецепторы и сигнальные 
пути еще недостаточно изучены [40, 41]. Не исключено, что подобная настройка в кле-
точном ответе макроорганизма существует и в отношении других метаболитов микро-
биоты, которые представлены в табл. 1, а также тех, которые в настоящий момент еще 
не идентифицированы. 

Следует отметить, что хемосигнальные системы прокариот и  эукариот обладают 
многими сходными чертами [33, 35]. Согласно эндосимбиотической гипотезе, эле-
менты сигнальных систем (рецепторы и сопряженные с ними белки, ферменты, гене-
рирующие вторичные посредники и т. п.) могли быть привнесены в развивающуюся 
эукариотическую клетку прокариотическими симбионтами [33, 35, 42]. Здесь следу-
ет отметить тот факт, что некоторые нейротрансмиттеры и гормоны макроорганизма 
могут стимулировать рецепторы микроорганизмов и участвовать в перекрестных кле-
точных реакциях. С  другой стороны, микробиота и  ее метаболиты могут активиро-
вать клеточные рецепторы макроорганизма, тем самым непосредственно участвовать 
в физиологических реакциях организма-хозяина. Такими рецепторами являются пат-
терн-распознающие рецепторы, например, толл-подобные рецепторы (TLR), NOD-по-
добные рецепторы, лектин-подобные рецепторы С типа и др., которые распознают кле-
точные структуры микроорганизмов и участвуют в иммунном ответе макроорганизма 
[43–45]. Эти рецепторы активируют специфические внутриклеточные сигнальные 
механизмы для образования транскрипционных факторов, таких как NF-κB или бе-
лок-активатор 1 (AP-1), которые индуцируют гены, необходимые для антимикробного 
иммунитета [43, 44]. 

TLR экспрессируются не только иммунными клетками, но также и другими клетка-
ми макроорганизма, в том числе эпителиоцитами кожи, слизистых оболочек респира-
торного, кишечного и мочевыводящего трактов, эндотелиоцитами, мышечными клет-
ками, кардиомиоцитами, фибробластами, нейронами энтеральной нервной системы 
(ЭНС) и другими клетками. TLR могут участвовать в патологии сердечно-сосудистой 
системы [46] и передаче сигнала в ЭНС [47].

Помимо паттерн-распознающих рецепторов, микробиота и ее продукты активиру-
ют рецепторы, сопряженные с G-белками (GPCR) [48], которые активируются КЦЖК 
[3, 7, 32, 35, 48–50] и другими метаболитами микробиоты [3, 51–53]. Более того, ней-
ротрансмиттеры, продуцируемые микробиотой, активируют соответствующие рецеп-
торы организма-хозяина, тем самым оказывая определенное влияние на физиологию 
макроорганизма. 

Микробиота способна вырабатывать метаболиты, которые еще не идентифициро-
ваны, тем не менее они стимулируют клеточные реакции макроорганизма. Например, 
ферментационные среды микроорганизмов (супернатанты) стимулируют внутрикле-
точные механизмы передачи сигнала в различных тканях макроорганизма [20, 52–55]. 
Так, было показано, что продукты ферментации лактобацилл обладают значительным 
потенциалом по высвобождению кальция из внутриклеточных депо и  стимуляции 
рецептор-управляемого входа кальция в  различных типах клеток и  тканей [20, 54]. 
Предполагается, что в эти процессы могут быть вовлечены GPCR [20]. Бактериальный 
супернатант Akkermansia muciniphila также стимулировал повышение внутриклеточ-
ного кальция в  энтероэндокринных клетках, однако при этом наблюдалось наруше-
ние активности митохондрий и стимуляция экспрессии альфа-синуклеина [55]. Таким 
образом, микробиота органически встроена в биохимию и физиологию макроорганиз-
ма, и ее действительно можно рассматривать как часть диффузной нейроэндокринной 
системы макроорганизма.
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ВЛИЯНИЕ МЕТАБОЛИТОВ МИКРОБИОТЫ НА МАКРООРГАНИЗМ

Как ранее отмечалось, микробиота способна продуцировать нейромедиаторы, 
КЦЖК, вторичные желчные кислоты, факторы роста, газообразные молекулы и мно-
жество других активных веществ [3, 5–8, 14–17] (табл. 1). Ниже подробнее рассматри-
ваются те вещества, которые микробиота может продуцировать и/или стимулировать 
их высвобождение из соответствующих компартментов макроорганизма. Очевидно, 
что список этих веществ далеко не полный.

Короткоцепочечные жирные кислоты 
КЦЖК — это ациклические карбоновые кислоты с числом атомов углерода не бо-

лее 6. В организме человека они продуцируются как в ходе нормального клеточного 
метаболизма, так и в результате ферментации пищевых волокон кишечной микробио-
той [7, 56–61]. Основными считаются уксусная (С2 – число атомов углерода), пропио-
новая (С3) и масляная кислоты (С4). Также образуются муравьиная (С1), валериановая 
(С5), капроновая (С6) кислоты и их производные (табл. 2). Бактериями, которые син-
тезируют КЦЖК, являются в основном Bacteroides, Bifidobacterium, Propionibacterium, 
Eubacterium, Lactobacillus, Clostridium, Roseburia и Prevotella [57] (табл. 2). 

Таблица 2. Короткоцепочечные органические кислоты, синтезируемые микробиотой 
в кишечнике

Название Основные виды/рода бактерий, продуцирующие КЦЖК Ссылки

Муравьиная кислота 
(формиат)

Bifidobacterium, Prevotella, Bacteroides, Eubacterium, 
Erysipelatoclostridium, Coprococcus, Dorea, Roseburia, 
Lactobacillus, Faecalibacterium, Streptococcus, Veillonella, 
Escherichia

[58, 59]

Уксусная кислота 
(ацетат)

Prevotella, Lactobacillus, Bifidobacterium, Akkermansia 
muciniphila, Bacteroides, Clostridium, Streptococcus, Blautia 
hydrogenotrophica, Ruminococcus

[60]

Пропионовая кислота 
(пропионат)

Phascolarctobacterium succinatutens, Akkermansia 
muciniphila, Bacteroides, Dialister, Megasphaera elsdenii, 
Veillonella, Coprococcus catus, Roseburia inulinivorans, 
Ruminococcus obeum, Salmonella

[59, 60] 

Масляная кислота 
(бутират)

Eubacterium hallii, Faecalibacterium prausnitzii, Anaerostipes 
caccae, Clostridium leptum, Eubacterium rectale, Roseburia 
intestinalis, Coprococcus catus

[59–61] 

Валериановая кислота 
(валерат) 

Clostridium  [58, 59]

Молочная кислота 
(лактат)

Lactobacillus, Bifidobacterium, Enterococcus, Streptococcus, 
Eubacterium

[61]

Концентрация КЦЖК не одинакова в разных разделах ЖКТ. Наивысшая концентрация 
КЦЖК наблюдается в слепой и толстой кишке. Концентрация КЦЖК зависит от количе-
ства потребляемых пищевых волокон и может значительно варьировать у разных людей 
[62]. Уксусная, пропионовая и масляная кислоты могут легко абсорбироваться через апи-
кальную мембрану колоноцитов [63]. Примерно 90% образующихся КЦЖК всасываются 
в толстом кишечнике, а затем транспортируются через воротную вену в печень [64], но 
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лишь небольшое количество достигает большого круга кровообращения и использует-
ся организмом-хозяином в качестве энергии [56] (рис. 1). Механизмы действия КЦЖК 
многочисленны: они повышают целостность кишечного [49] и ГЭБ [27], стимулируют 
перистальтику ЖКТ, модулируют воспалительный и иммунный ответ [3, 49, 50], влияют 
на метаболизм глюкозы и липидов [3, 13, 50, 60], а также обладают нейропротекторным 
и эпигенетическим действием, влияя на экспрессию генов [3, 32, 49, 50]. Помимо КЦЖК, 
микробиота участвует в метаболизме жирных кислот со средней длиной цепи (C6 - 12), 
а также длинноцепочечных жирных кислот (C > 13). Все жирные кислоты активируют 
соответствующие рецепторы различных клеток макроорганизма. Следует отметить, что 
активация рецепторов жирными кислотами осуществляется как таковыми, получаемыми 
макроорганизмом из пищевых ингредиентов, так и синтезируемыми микробиотой.

ECs

ECs

ECs

5-HT

EC-L

GLP-1
PYY

Inflammation

1

2

3

SCFA

UM

Nts

Microbiota

EN

AN

Ig A NA

Microbiota
modulation

1, 2, 3

Рис. 1. Влияние микробиоты и ее метаболитов на эндокринные функции макроорганизма. В результате фермен-
тации пищевых продуктов и волокон образуются КЦЖК (SCFA) и другие метаболиты микробиоты в просвете 
кишечника. КЦЖК стимулируют рецепторы GPR-41/43, в результате энтероэндокринные L-клетки (EC-L) выс-
вобождают GLP-1 и PYY (см. ниже). Также КЦЖК могут стимулировать пролиферацию L-клеток. Энтерохро-
маффинные клетки (ЕСs) в результате стимуляции GRP-41/43 высвобождают 5-HT. КЦЖК и другие метаболиты 
микробиоты, например, триптамин, могут оказывать прокинетическое действие на ЖКТ. Неидентифицирован-
ные продукты микробиоты (UM) могут стимулировать ЕСs и EC-L, а также эндотелиальные (E) клетки. Ней-
ротрансмиттеры (Nts), синтезируемые микробиотой, могут влиять как на энтеральные (ЕN) нейроны, так и на 
блуждающий нерв (vagus). КЦЖК, UM и нейротрансмиттеры, которые проникают через эпителиальный барьер 
(соответственно 1, 2 и 3), могут проявлять как паракринное, так и эндокринное действие, проникая в портальную 
систему печени. Макроорганизм может модулировать состав и количество микроорганизмов, например, через 
высвобождение иммуноглобулина А (IgA) и через высвобождение норадреналина (NA) адренергическими ней-
ронами (AN). Также состав микробиоты модулируется самими продуктами микроорганизмов, например, КЦЖК, 
UM и нейротрансмиттерами, которые в этом случае могут выступать как медиаторы кворумной сигнализации. 
Не показано сложное взаимодействие микробиоты и иммунных клеток, а также взаимодействие с ферментатив-
ной системой макроорганизма, включающей ферменты и пристеночное пищеварение. Условные обозначения: 
Microbiota – микробиота, SCFA – short chain fatty acids (короткоцепочечные жирные кислоты, КЦЖК), UM – 
uncharacterized microbial products (неидентифицированные продукты микробиоты), Nts – neurotransmitters (ней-
ротрансмиттеры: глутамат, GABA, ацетилхолин, серотонин, катехоламины, гистамин), GPR-41/43 – receptors 
SCFA (рецепторы КЦЖК), EC-L – intestinal enteroendocrine L-type cells (энтероэндокринные клетки L-типа), 
ЕСs – enterochromaffin cells (энтерохромаффинные клетки), E – endothelial cells (эндотелиальные клетки), 5-HT – 
serotonin (серотонин), GLP-1 – glucagon-like peptide 1 (глюкагоноподобный пептид-1), PYY – peptide YY (пептид 
YY), vagus – блуждающий нерв, EN – enteric neuron (энтеральный нейрон) AN – adrenergic neuron (адренергиче-
ский нейрон), NE – norepinephrine (норадреналин), IgA – immunoglobulin A (иммуноглобулин А). 
При создании рисунка были частично использованы графические элементы Servier Medical Art (https://smart.
servier.com)
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КЦЖК активируют рецептор, связанный с  G-белком (GPCR), на  плазматической 
мембране клеток-мишеней, который широко распространен у млекопитающих [32, 35, 
49, 50]. КЦЖК, в основном пропионат и ацетат, активируют как минимум два типа ре-
цепторов, связанных с G белками, а именно: Gpr41 (FFAR3) и Gpr43 (FFAR2). Эти ре-
цепторы широко экспрессируются в дистальном отделе тонкой кишки, а также на ади-
поцитах и в толстом кишечнике [3, 7, 13] (рис. 1). Предполагается, что микробиота 
посредством передачи сигналов через КЦЖК-Gpr43 может регулировать иммунную 
и воспалительную реакции макроорганизма [65]. Ацетат и пропионат влияют на на-
копление липидов и ингибирование липолиза в основном через Gpr43. Gpr41 вовле-
чен в микробиота-зависимую регуляцию процессов, связанных с ожирением, и в про-
дукцию лептина [3, 66]. КЦЖК проникают через гематоэнцефалический барьер [27] 
и  могут захватываться глией и  в меньшей степени нейронами, в  которых они, как 
полагают, являются одним из источников энергии для клеток [3]. КЦЖК принимают 
участие в синтезе и высвобождении нейротрансмиттеров [67]. КЦЖК также способны 
увеличивать синтез дофамина и соответствующие катехоламины через индукцию ти-
розингидроксилазы, которая является ключевым ферментом в синтезе катехоламинов 
[68]. При достижении органов-мишеней КЦЖК используются в качестве источников 
энергии и могут участвовать в таких метаболических путях, как глюконеогенез [69] 
и липогенез [3, 66], тем самым КЦЖК участвуют в энергетическом гомеостазе всего 
тела макроорганизма [56].

Микробиота и нейротрансмиттеры
Как отмечалось ранее, микробиота может как стимулировать высвобождение гор-

монов и нейротрансмиттеров в организме хозяина, так и сама синтезировать подобные 
нейроактивные вещества [1–3, 14, 15, 70, 71] (рис. 1). Синтезируя нейротрансмиттеры, 
микробиота оказывает влияние на дофамин-, холин-, глутамат-, серотонин- и ГАМК-
ергические системы макроорганизма [1, 71]. 

Серотонин и 5-HT предшественники
Серотонин (5-гидрокситриптамин, 5-НТ) является метаболитом незаменимой ами-

нокислоты триптофана и играет важную роль в регуляции ряда функций организма хо-
зяина. У млекопитающих 5-HT влияет на поведение хозяина, моторику ЖКТ, ремодели-
рование костей и гемопоэз [72–74]. Серотонин играет важную роль при формировании 
и функционировании нервной системы, при воспалении, а также является посредни-
ком при коммуникации нервной, иммунной и пищеварительной систем [1, 72, 74, 75]. 
В  ЖКТ рецепторы к  серотонину экспрессируются в  основном в  гладкомышечных 
клетках кишечника [76], через которые серотонин регулирует моторику ЖКТ. Повы-
шенная перистальтика ЖКТ способствует лучшему всасыванию питательных веществ 
и увеличению секреции инсулина [77]. Однако чрезмерная стимуляция перистальтики 
кишечника вследствие повышенной концентрации серотонина может приводить к па-
тофизиологическому состоянию, сходному с  синдромом раздраженного кишечника 
[78]. Примерно 90% серотонина синтезируется энтерохромаффинными клетками ки-
шечника (ЭХК), и на данный процесс сильно влияет микробиота кишечника [79, 80] 
(рис. 1). Метаболиты микробиоты, например, КЦЖК и вторичные ЖК, стимулируют 
ЭХК к  увеличению синтеза и  высвобождению 5-HT [80, 81] (рис.  1, 2). Микробио-
та также сама способна участвовать в синтезе серотонина и метаболизме триптофана 
[1, 80]. Ozogul наблюдал синтез серотонина следующими штаммами молочнокислых 
бактерий: Lactococcus lactis subsp. cremoris (MG 1363), L. lactis subsp. lactis (IL1403), 
Lactobacillus plantarum (FI8595) и  Streptococcus thermophilus (NCFB2392) [82]. Дру-
гими авторами было показано, что Е. coli К-12 в культуре способен синтезировать се-
ротонин в наномолярных концентрациях, причем у этой бактерии существует отлич-
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ный от животных путь синтеза серотонина из триптофана [21, 22]. Серотонин был 
обнаружен в различных бактериях: Klebsiella pneumonia, Corynebacterium sp., Shigella, 
Streptococcus, Listeria monocytogens, E. coli, Enterococcus faecalis, Streptococcus 
faecalis и  дрожжах Candida guillermondii [21, 83]. Серотонин стимулировал in vitro 
рост и клеточную агрегацию Streptococcus faecalis, Candida guillermondii, E. coli K-12 
и Rhodospirillum rubrum при концентрациях от 2 × 10−7 до 2 × 10−5 моль/л [21]. Пробио-
тические бактерии способны снижать активность ферментов, превращающих трипто-
фан в кинуренин, что может приводить к повышению уровня серотонина и снижению 
симптомов депрессии [84]. Недавно было показано, что в кишечнике новорожденных 
микробиота может продуцировать повышенные уровни серотонина, которые необхо-
димы на раннем этапе развития макроорганизма. Высокие уровни серотонина влия-
ли на метаболизм и дифференцировку регуляторных Т-клеток кишечника (Treg), что 
способствовало появлению иммунной толерантности в раннем возрасте на пищевые 
антигены и комменсальные бактерии [75]. Однако серотонин способен провоцировать 
рост патогенов. Повышенный уровень серотонина через механизмы чувства квору-
ма увеличивал патогенность Pseudomonas aeruginosa как in vitro, так и in vivo за счет 
усиления образования биопленок и выработки факторов вирулентности [85]. Поэтому 
необходимо дополнительное изучение процессов продукции серотонина микробиотой 
и пробиотическими микроорганизмами, чтобы успешно применять серотонин-синте-
зирующие бактерии в медицинской практике.

Катехоламины
Катехоламины, такие как дофамин и норадреналин, являются основными нейро

медиаторами, которые опосредуют различные функции ЦНС, такие как контроль 
движения, сознание, управление памятью, эмоциями и эндокринной системой. Бак-
терии также могут синтезировать катехоламины: дофамин в концентрациях от 0.45 
до  2.13  ммоль/л был обнаружен в  биомассе бактерий Bacillus cereus, B. mycoides, 
B.  subtilis, Proteus vulgaris, Serratia marcescens, S. aureus и  E. coli [21, 22, 86]. 
Норадреналин был обнаружен в  концентрациях 0.21–1.87 ммоль/л в  B. mycoides, 
B. subtilis, P. vulgaris и S. marcescens [86]. Более того, бактерии, например B. subtilis, 
могут высвобождать норадреналин и дофамин в наружную среду и, возможно, та-
ким образом участвовать в  межклеточных коммуникациях как между бактериями, 
так и клетками макроорганизма [86]. Бактерия Е. coli К-12 может синтезировать in 
vitro дофамин и  норадреналин, а  также их предшественник  – ДОФА. Среда, в  ко-
торой культивировались бактерии, содержала микромолярные концентрации ДОФА 
и наномолярные концентрации дофамина и норадреналина [1, 87]. Интересно, что 
во многих случаях содержание катехоламинов в среде, в которой культивировались 
бактерии, было выше, чем в крови человека [86]. Было показало, что в присутствии 
катехоламинов стимулировался рост широкого спектра патогенных и сапрофитных 
бактерий, при этом увеличивалась способность патогенных бактерий образовывать 
биопленки [1, 21, 83, 88, 89]. Предполагается, что катехоламины активируют рецеп-
торы бактерий, связанные с  гистидинкиназами, которые запускают внутриклеточ-
ную сигнализацию, в результате которой происходит межклеточное взаимодействие 
между самими бактериями, а также бактериями и эукариотическими клетками [1, 19, 
90]. Примечательно, что эти же рецепторы бактерий реагируют на  аутоиндукторы 
кишечной микробиоты типа AI-2 и AI-3, тем самым стимулируя рост бактерий [19, 
90–92]. Эффект стимуляции патогенных бактерий и  патобионтов катехоламинами 
может иметь клиническое значение, поскольку при стрессе, хирургических вмеша-
тельствах и некоторых заболеваниях, например при сепсисе, наблюдается повышен-
ная концентрация катехоламинов в  крови, которая может непосредственно стиму-
лировать рост патогенов, усугубляя течение заболевания [88, 89, 92]. Escherichia 
coli (EHEC) serotype O157:H7 может быть более вирулентной у людей, находящихся 
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в состоянии стресса по сравнению со спокойными людьми, поскольку экзогенный 
адреналин увеличивает вирулентность этого штамма [92]. Недавно было показано, 
что повышенные концентрации норадреналина хозяина могут стимулировать рост 
Fusobacterium nucleatum через рецепторы QS, AI-2, что, в свою очередь, увеличивает 
риск новообразований в толстом кишечнике [91]. Таким образом, клетки макроор-
ганизма и микробиоты вступают в сложные межклеточные взаимодействия, опосре-
дуемые нейрогормональными агентами. Данное взаимодействие может влиять как 
на микробиоту, на ее профиль и метаболический потенциал (рис. 1), так и на гипота-
ламо-гипофизарно-надпочечниковую ось, меняя нейрохимический профиль макро-
организма. 

Ацетилхолин
Ацетилхолин является важным нейромедиатором центральной и периферической 

нервных систем. Ацетилхолин также был обнаружен в других тканях: в клетках желу-
дочно-кишечного тракта, кардиомиоцитах, иммунных клетках, дыхательной и мочепо-
ловой систем, он выполняет важные физиологические функции и в других системах, 
отличных от нервной [93]. Ацетилхолин может синтезироваться различными микроор-
ганизмами, в частности, он обнаружен в бактериях L. plantarum [83, 94]. Было показа-
но, что некоторые типы лактобактерий и продукты их ферментации положительно вли-
яют на холинэргическую передачу сигнала, а также снижают нейровоспаление [95]. 
Однако никотин и ацетилхолин могут стимулировать рост патогенных бактерий, таких 
как Chlamydia pneumonia [96]. Синтез ацетилхолина был обнаружен в E. coli JCM 5491, 
Staphylococcus aureus JCM 2151 и Bacillus subtilis PCI 219 [22]. Хотя синтез ацетилхо-
лина был обнаружен во всех бактериальных образцах, но его уровни были низкими, 
поэтому авторы предположили, что в  бактериях существует отличный от животных 
путь синтеза ацетилхолина [22].

Глутамат
Глутамат – важнейший возбуждающий нейротрансмиттер в нервной системе по-

звоночных [97]. Глутамат также участвует в процессах пластичности нервной систе-
мы. Помимо клеток нервной системы, рецепторы к глутамату присутствуют в эпители-
альных клетках желудка, ЖКТ и энтеральных нейронах [97, 98]. Глутамат стимулирует 
выделение желудочного сока, перистальтику ЖКТ и транспорт электролитов [97, 98]. 
Помимо этого, глутамат может стимулировать афферентные волокна ЭНС и блуждаю-
щего нерва, передавая сигналы в мозг, тем самым участвуя в различных физиологиче-
ских процессах, таких как термогенез и энергетический гомеостаз [97, 99].

Глутамат синтезируется определенными штаммами микроорганизмов. В промыш-
ленных масштабах для синтеза используют Corynebacterium glutamicum, Brevibacterium 
lactofermentum и  Brevibacterium flavum [97]. Молочнокислые бактерии (LAB) также 
синтезируют глутамат [97, 98]. В ферментированных продуктах азиатской кухни най-
дены LAB с  повышенной способностью к  синтезу глутамата [100]. Таким образом, 
микробиота посредством синтеза глутамата способна влиять на физиологические и па-
тофизиологические процессы, происходящие в  организме хозяина [97–99]. В  то же 
время микробиота может опосредованно влиять на глутаматергическую передачу [97]. 
Так, в результате метаболизма триптофана образуются 5-HT, кинуренин (Kyn) и про-
изводные индола. KynА является антагонистом NMDA-рецепторов и может снижать 
глутаматную эксайтотоксичность как в ЦНС, так и в ЭНС [97].

Гамма-аминомасляная кислота
Гамма-аминомасляная кислота (ГАМК) является основным тормозным нейромеди-

атором в  центральной и  периферической нервных системах млекопитающих и  при-
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нимает участие в регуляции многих жизненных процессов [101]. ГАМК и рецепторы 
к ГАМК были обнаружены в ЖКТ, печени, поджелудочной железе, коже, сердце, лег-
ких, мочевом пузыре и яичниках [101]. В периферических тканях содержание ГАМК 
мало и составляет около 1% по сравнению с мозгом и, предположительно, продуци-
руется микробиотой [102]. ГАМК влияет на когнитивные функции, включая эмоции 
и память, снижает депрессивное состояние и возбудимость нейронов [102, 103]. ГАМК 
может быть вовлечена в  развитие таких нейродегенеративных заболеваний, как бо-
лезнь Паркинсона, Альцгеймера, шизофрения и эпилепсия [102–104]. Предполагает-
ся, что при этих нейродегенеративных заболеваниях происходит нарушение состава 
микробиоты (дисбиоз) и уменьшается количество бактерий, продуцирующих ГАМК 
[102]. ГАМК играет значительную роль в  функционировании сердечно-сосудистой 
системы, поскольку способна снижать артериальное давление и вязкость крови [103, 
105]. ГАМК снижает артериальную жесткость, что понижает нагрузку на сердце [103, 
105]. ГАМК модулирует секрецию гормона роста через гипоталамо-гипофизарную ось 
[103] и  обладает нейротрофической активностью [101]. Кроме этого, ГАМК играет 
роль в  ряде рецептор-опосредованных иммунологических реакций и  в нейрофизио-
логических процессах кишечника, стимулируя выделение нейропептидов из нервных 
волокон [22]. Рецепторы к ГАМК экспрессируются в ЖКТ, а также в нейронах ЭНС 
[106]. Рецепторы ГАМК участвуют в  регуляции моторики ЖКТ, а  также в  передаче 
сигнала по оси кишечник-мозг [98, 106].

ГАМК, обладая таким разнообразием положительных свойств, широко исполь-
зуется в  качестве биоактивного компонента в  пищевой и  фармацевтической про-
мышленности. Уровни ГАМК в  ферментированных пищевых продуктах достаточ-
но велики. Например, в соответствующих продуктах Азиатского региона, особенно 
Японии, Китая и Таиланда, уровни ГАМК достигают миллимолярных концентраций 
[102, 103, 107]. ГАМК образуется из глутамата с  помощью глутаматдекарбоксила-
зы, кодируемой геном GAD, и  кофактора пиридоксаль-5′-фосфата [107]. Микроор-
ганизмы, используемые для биосинтеза ГАМК, включают LAB, Propionibacterium, 
Bifidobacterium, Enterococcus, Leuconostoc, Pediococcus, Bacteroides, дрожжи, 
Escherichia coli и  Aspergillus [22, 97, 102, 103, 107]. Было обнаружено, что LAB 
обладают более высокой способностью к  синтезу ГАМК по сравнению с  другими 
микроорганизмами [102, 103, 107]. В  ферментированных продуктах были обнару-
жены штаммы LAB с наивысшей способностью к продукции ГАМК [102, 103, 107, 
108]. Подбирая соответствующие физико-химические условия ферментации, мож-
но получить значительные количества ГАМК в продуктах [103]. В Японии и Китае 
были приняты программы по разработке функциональных продуктов с повышенным 
содержанием ГАМК [102, 103]. В  ферментированных продуктах некоторые штам-
мы LAB могут увеличивать концентрацию ГАМК до сотен миллимолей [108]. LAB 
и бифидобактерии, выделенные из кишечника человека, могут продуцировать ГАМК 
из глутамата натрия в культуре [109]. Из 91 штамма LAB и бифидобактерий чело-
веческого происхождения было отобрано 5 штаммов, среди которых Lactobacillus 
brevis и Bifidobacterium dentium были наиболее эффективными продуцентами ГАМК 
[109]. Предполагается, что синтезированная микроорганизмами ГАМК может ока-
зывать влияние на ось кишечник-мозг. Прием внутрь Lactobacillus rhamnosus (JB-1) 
увеличивал экспрессию мРНК ГАМК рецепторов, ГАМКАα2 в гиппокампе и ГАМКВ1b 
в области коры головного мозга [110]. Эти рецепторы вовлечены в систему контроля 
тревоги и депрессии, а также широко распространены в областях мозга, связанных 
с эмоциями и настроением [110]. Последующие исследования показали, что прием 
пробиотиков, таких как Lactobacillus и  Bifidobacterium, способствует увеличению 
ГАМК как в кишечнике, так и в мозге [111] и может влиять на функционирование 
центральной нервной системы, приводя к изменениям в поведении и улучшению ког-
нитивных функций [112].
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Гистамин
Гистамин синтезируется с помощью гистидиндекарбоксилазы из L-гистидина, не-

заменимой аминокислоты для человека, которая присутствует во многих пищевых про-
дуктах [1, 21, 83, 113]. У млекопитающих гистамин является важным биогенным ами-
ном, выступающим в качестве нейротрансмиттера в центральной и периферической 
нервных системах. Гистамин в головном мозге модулирует ГАМК-ергическую, глута-
матергическую и дофаминергическую системы на пре- и постсинаптическом уровнях 
[113]. Помимо нервной системы, рецепторы к гистамину обнаружены на клеточных 
мембранах дыхательной, сердечно-сосудистой, желудочно-кишечной систем, а также 
на коже и клетках крови [114]. Гистамин вызывает расширение периферических крове-
носных сосудов, гипотонию и головную боль, а также аллергические реакции организ-
ма. Сокращение гладких мышц кишечника, вызванное гистамином, вызывает спазмы 
в животе, диарею и рвоту [114, 115].

Достаточно большое число бактериальных родов, включая Lactobacillus, 
Lactococcus, Streptococcus, Pediococcus Bacteroides, Clostridium, Fusobacterium 
и Enterococcus, синтезируют гистамин [1, 114]. Более 100 видов бактерий кишечного 
микробиома человека способны синтезировать гистамин [116]. Такие бактерии, как 
Morganella morganii, Proteus и  Klebsiella, способны синтезировать гистамин у  рыб 
в  значительных количествах [21, 83]. Гистамин, синтезируемый микроорганизмами, 
участвует как в физиологических реакциях, так и в патогенезе заболеваний организма-
хозяина. Грамотрицательные бактерии, такие как Branhamella catarrhalis, Haemophilus 
parainfluenzae и Pseudomonas aeruginosa, могут синтезировать значительное количест-
во гистамина in vitro, что подразумевает бактериальную продукцию гистамина в зоне 
инфицирования и может рассматриваться в качестве дополнительного повреждающего 
фактора, усугубляющего течение хронического бронхита, муковисцидоза и пневмонии 
[1, 83]. Среди непатогенных штаммов группа бактерий Enterobacteriacae может обра-
зовывать гистамин в значительных концентрациях [83]. 

Употребление в пищу продуктов, содержащих высокую концентрацию гистамина, 
связано с побочными эффектами, указанными выше [115]. Высокие концентрации ги-
стамина могут содержаться в ферментированных продуктах, выдержанном мясе и сы-
рах, кефире, в некоторых видах рыб. Тем не менее гистамин, продуцируемый проби-
отическим штаммом Lactobacillus reuteri (АТСС РТА 6475), приводит к подавлению 
продукции провоспалительного фактора некроза опухоли в  культуре моноцитов че-
ловека [117]. Кроме того, гистамин, синтезируемый штаммом L. reuteri, может вли-
ять на сигнализацию в ЭНС (на восприятие боли и перистальтику кишечника) [117]. 
Имеются данные, что гистамин может облегчать симптомы болезни Паркинсона [113, 
118]. Поэтому необходимы дополнительные исследования для лучшего понимания 
роли бактериального синтеза гистамина в кишечнике [22]. Людям с повышенной чув-
ствительностью к гистамину следует избегать продуктов с возможным повышенным 
содержанием гистамина, а также приема пробиотиков, продуцирующих гистамин. 

Влияние микробиоты на гормональную систему ЖКТ
ЖКТ, помимо пищеварительных, выполняет и  эндокринные функции [119, 120, 

122]. Одной из важнейших частей ЖКТ являются энтероэндокринные клетки (ЭЭК) [3, 
53, 121, 123, 124]. ЭЭК распределены по всему ЖКТ и как все эпителиальные клетки 
постоянно обновляются [123]. Существует несколько типов ЭЭК, которые производят 
соответствующий(ие) гормон(ы) [53, 121, 124]. Наиболее изученными являются ЭЭК 
L-типа и ЭХК [3, 125]. ЭЭК имеют различные рецепторы типа GPCR, ER (рецепторы 
эстрогенов), рецепторы прогестерона и реагируют на питательные вещества, гормоны 
хозяина и на метаболиты микробиоты выделением соответствующих гормонов, пепти-
дов и нейротрансмиттеров [124] (рис. 1). ЭЭК интегрированы в нервную сеть хозяина 
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как через продукцию активных веществ, так и через синаптическую связь с эфферент-
ными и афферентными волокнами ЭНС [126] (рис. 1). ЭЭК имеют также тесный кон-
такт с капиллярами, в которые поступают их инкреторные продукты. 

ЭХК в ответ на стимуляцию выделяют в основном 5-HT [79, 80, 125, 127] (рис. 1). 
Как отмечалось ранее, до  90% всего серотонина в  организме хозяина производится 
в ЭХК. ЭХК содержат различные рецепторы, которые реагируют как на питательные 
вещества, так и  на метаболиты микробиоты. Причем тип и  количество рецепторов 
ЭХК меняется и весьма значительно по всей длине ЖКТ [125]. 

В настоящий момент идентифицировано более 30 гормонов в ЖКТ [119]. При этом 
гормоны кишечника следует рассматривать как общие межклеточные и межсистемные 
регуляторы в макроорганизме, а не только в ЖКТ и окружающих тканях [127]. Как 
отмечалось ранее, метаболиты микробиоты, такие как КЦЖК, вторичные ЖК, индо-
лы, H2S и др., модулируют секрецию гормонов из ЭЭК и ЭХК, особенно в дистальных 
отделах ЖКТ [3, 13, 71, 97, 98, 121, 122, 124, 125, 128] (рис. 1, 2). КЦЖК также спо-
собствуют увеличению количества L-клеток в ЖКТ [128]. Ранее было показано, что 
продукты интенсивной ферментации LAB стимулируют сокращение толстого кишеч-
ника in situ, причем происходит значительное увеличение уровня внутриклеточного 
кальция [Ca2+]i в сократительных клетках [129]. Таким образом, соответствующая кор-
рекция микробиома может способствовать поддержанию метаболического здоровья 
макроорганизма и сократительной функции ЖКТ.

Глюкагоноподобный пептид-1 (GLP-1) и пептид YY (PYY)
КЦЖК стимулируют высвобождение GLP-1 и PYY из ЭЭК L-типа через активацию 

рецепторов GPR41 и GPR43 [3, 7, 13, 71, 97, 122, 121, 128] (рис. 1). GLP-1 и PYY явля-
ются сильными анорексигенными гормонами, которые участвуют в модуляции пита-
ния, контроле массы тела и метаболизма [130]. PYY замедляет моторную активность 
ЖКТ и снижает секрецию желудочного и кишечного сока, а также может увеличивать 
чувствительность к инсулину [121, 128, 131]. Ректальное введение ацетата значитель-
но увеличивало концентрацию PYY, GLP-1 в крови у женщин с повышенным уров-
нем инсулина [132]. На модели изолированного толстого кишечника было показано, 
что ацетат и бутират стимулируют выделение PYY и GLP-1 [133]. Рецепторы к этим 
пептидам экспрессируются в нервных волокнах ЭНС, а также в нейронах ЦНС, что 
позволяет ЦНС контролировать прием пищи [71, 130]. Некоторые штаммы LAB, а так-
же прием пребиотиков способствуют увеличению GLP-1 и PYY [3, 128]. Вторичные 
желчные кислоты также стимулируют высвобождение этих гормонов через активацию 
рецепторов (TGR5 – Takeda G protein-coupled receptor 5 и FXR – Farnesoid X receptor) 
[3, 128] (рис. 2). Не исключено, что ректальное введение продуктов метаболизма сим-
бионтной микробиоты может иметь существенное значение в поддержании нормаль-
ной функции ЖКТ [129].

	
Лептин

Лептин – гормон жировой ткани, и количество циркулирующего лептина пропор-
ционально количеству жира в организме. Таким образом, лептин является посредни-
ком между жировой тканью и мозгом (гипоталамо-гипофизарной системой) [134, 135]. 
Было показано, что лептин регулирует экспрессию орексигенных/анорексигенных 
нейропептидов гипоталамуса и заднего мозга у безмикробных мышей [136]. Помимо 
адипоцитов, лептин также синтезируется другими тканями и органами, такими как же-
лудок, скелетные мышцы, гипофиз, лимфоидная ткань и репродуктивная система [135, 
137]. В норме повышенные уровни лептина подавляют чувство голода и стимулируют 
расход энергии. При снижении концентрации лептина происходят обратные процессы 
[135, 137]. Рецепторы к лептину экспрессируются в мозге, на иммунных клетках и клет-
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ках ЖКТ [134, 135, 137]. Лептин стимулирует восстановление поврежденных тканей 
и воспалительные реакции в организме [137]. Резистентность к лептину может увели-
чивать риск развития ожирения [135] и болезни Альцгеймера [71, 134]. Существуют 
данные, что лептин регулирует синаптическую пластичность, улучшает обучаемость 
и память [134]. Активность микробиоты и изменение концентрации лептина взаимос-
вязаны [13, 71, 122]. Определенные виды бактерий как положительно, так и отрица-
тельно коррелировали с  уровнями лептина [122]. Применение антибиотиков у  крыс 
способствовало резкому снижению уровня циркулирующего лептина и уменьшению 
повреждений при инфаркте миокарда [138]. Мета-анализ 26 клинических исследова-
ний показал, что прием пробиотиков/синбиотиков также приводил к  значительному 
снижению уровня циркулирующего лептина [139]. Однако в более ранних исследова-
ниях была показана положительная корреляция между уровнем лептина и количеством 
бактерий Bifidobacterium и Lactobacillus в кишечнике крыс [140]. Было также показано, 
что лептин, в свою очередь, может влиять на состав микробиоты кишечника независи-
мо от диеты [141].

Грелин
Орексигенный гормон грелин синтезируется в основном в желудке и  тонком ки-

шечнике, а также в небольших количествах в других органах: почках, поджелудочной 
железе, сердце, легких и плаценте [53, 140]. В ЖКТ грелин высвобождается из ЭЭК 
[53]. Грелин контролирует потребление пищи, уровень грелина повышается между 
приемами пищи и понижается, когда желудок наполнен. Помимо этого, грелин сни-
жает воспаление и секрецию инсулина, обладает кардиопротективным эффектом, спо-
собствует регенерации мышц и способен регулировать ожирение, нейрогенез и имму-
нитет [53, 140]. Существует определенная связь между грелинергической сигнальной 
системой и микробиотой ЖКТ [52, 53, 136, 140, 142]. Микробиота и ее продукты могут 
модулировать секрецию пептидов ЖКТ, включая грелин [52, 53, 136, 142]. Например, 
КЦЖК могут ингибировать секрецию грелина, воздействуя на рецепторы КЦЖК ЭЭК 
[51–53, 142]. Аминокислоты, в  том числе продуцируемые микробиотой, оказывают 
разнонаправленное влияние на секрецию грелина [53]. Недавно было показано, что ме-
таболиты симбионтной микробиоты (Bifidobacterium и Lactobacillus), а также КЦЖК 
способны непосредственно влиять на сигнальную систему грелина через его рецептор 
GHSR-1a, снижая эффективность передачи сигнала от гормона в клетку [52, 53]. Дан-
ный факт может уменьшать потребность организма в пище.

Биотрансформация желчных кислот
Известно, что ЖК обладают важными паракринными и эндокринными функциями 

[157], а вторичные ЖК могут предотвращать воспаление в толстом кишечнике [159] 
(рис. 2). Помимо участия в абсорбции пищевых липидов, ЖК являются одними из важ-
ных регуляторов системного метаболизма и процессов воспаления [157, 158]. ЖК при-
нимают непосредственное участие в метаболических процессах и в процессах обмена 
энергией, в регуляции обмена липидов и глюкозы [157, 160]. В настоящий момент ЖК 
считаются сигнальными молекулами, которые могут активировать многие внутрикле-
точные сигнальные пути [157, 158, 160, 161]. Так, ЖК могут стимулировать ядерные 
рецепторы, такие как фарнезоидный X-рецептор (FXR), прегнан X-рецептор, рецеп-
тор витамина D, последний может активироваться литохолевой кислотой [157–158, 
160, 161]. ЖК через фарнезоидный X-рецептор могут контролировать гомеостаз глю-
козы [157, 162]. Помимо ядерных рецепторов, ЖК активируют GPCR, такие как TGR5, 
мускариновые рецепторы и формилпептидные рецепторы [157, 158, 160, 161, 163]. 

Несмотря на  то, что ЖК могут активировать многие сигнальные пути, большая 
часть метаболических эффектов ЖК опосредована TGR5 (рис.  2) и  ядерным рецеп-
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тором FXR, которые, по-видимому, являются основной мишенью действия ЖК в ре-
гуляции глюкозы, липидов и  энергетического обмена [157, 160, 161]. Значительное 
количество TGR5 экспрессируется в  эпителиальных клетках желчных путей [164], 
на иммунных клетках, в селезенке, в бурой жировой ткани, в легких, в сердце и в ки-
шечнике, особенно в подвздошной и толстой кишке [164, 165]. Обычно в разных тка-
нях стимуляция TGR5 может активировать различные внутриклеточные сигнальные 
системы [165]. 

ECs

5-HT

GLP-1
PYY

Inflammation

SCFA
Microbiota

TGR5 SBA
toxic Cancer

Inflammation

Neurodegeneration

GF
BDNF

NGF

Neurogenesis
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Рис. 2. Эффекты вторичных желчных кислот и гормонов роста при участии микробиоты. Микробиота обра-
зует вторичные желчные кислоты (SBA) из первичных. SBA, такие как литохолевая и  тауролитохолевая, 
в наибольшей степени стимулируют TGR5. В результате стимуляции TGR5 энтерохромаффинные клетки 
(ЕСs) высвобождают 5-HT, а L-клетки (EC-L) высвобождают GLP-1 и PYY. Токсичные же SBA могут про-
воцировать развитие рака, стимулировать процессы воспаления и нейродегенерацию. Микробиота может 
влиять на образование гормонов роста в макроорганизме. Были также показаны образование нейротрофи-
ческого фактора мозга (BDNF) в макроорганизме и стимуляция нейрогенеза микробиотой и ее метаболита-
ми. Условные обозначения: SBA – secondary bile acids (вторичные желчные кислоты), GF – growth factors 
(факторы роста), TGR5 – рецептор SBA, BDNF – brain-derived neurotrophic factor (нейротрофический фактор 
мозга), NGF – nerve growth factor (фактор роста нервов). Остальные обозначения такие же, как на рис. 1.

Микробиота участвует в биотрансформации и реабсорбции желчных кислот в тол-
стом кишечнике [155, 156]. До 90% фекальных ЖК у  здорового человека являются 
вторичными, например, такие как литохолевая и дезоксихолевая кислоты. Вторичные 
ЖК образуются из первичных под действием ферментов микробиоты [155, 156]. Та-
ким образом, микробиота является важным звеном, обеспечивающим циркуляцию ЖК 
в организме хозяина [155–158]. На сегодняшний день считается, что вторичные ЖК, 
такие как литохолевая и тауролитохолевая, в наибольшей степени стимулируют TGR5 
[68, 165] (рис. 2). В кишечнике стимуляция TGR5 способствует секреции энтероэндо-
кринными L-клетками глюкагоноподобного пептида 1 (GLP-1) и пептида YY (PYY) 
[45, 68, 163] (рис. 2). GLP-1 улучшает метаболизм глюкозы, секрецию инсулина и сти-
мулирует пролиферацию и  дифференцировку бета-клеток, секретирующих инсулин. 
Агонисты TGR5 могут быть эффективны при лечении диабета 2-го типа, коррекции 
уровня глюкозы и массы тела [166]. Активация TGR5 с помощью ЖК увеличивает рас-
ход энергии в бурой жировой ткани, что может быть эффективным методом для лече-
ния ожирения [68, 160, 163, 165]. PYY способствует снижению аппетита, замедляет 
перистальтику ЖКТ и полезен пациентам с избыточным весом и ожирением [68].
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Однако цитотоксические вторичные ЖК могут быть причиной когнитивных нару-
шений и иметь отношение к прогрессированию болезни Альцгеймера [167] (рис. 2). 
Тем не менее некоторые вторичные ЖК, например, урсодезоксихолевая кислота и ее 
конъюгаты, являются гепатопротекторами и  проявляют нейропротекторную актив-
ность посредством активации FXR и TGR5 [71, 168].

Таким образом, микробиота посредством биотрансформации ЖК активно участ-
вует в энтерогепатическом цикле ЖК [161, 163] и оказывает влияние на многие фи-
зиологические функции макроорганизма, как описано выше. Верно и обратное, ЖК 
макроорганизма могут влиять на видовой состав и функцию микробиоты [156, 169]. 
Интересно отметить, что микробиота ЖКТ долгожителей способна генерировать уни-
кальные вторичные ЖК, например, различные изоформы литохолевой кислоты, что 
может уменьшать воспаление и сдерживать рост патогенных микроорганизмов [170].

Влияние микробиоты на гормоны роста и нейротрофические факторы
В последнее время интенсивно изучается влияние микробиоты на  гормоны ро-

ста (ГР) макроорганизма [143–146]. Например, микробиота кишечника играет ре-
шающую роль в росте молодых животных [143–145]. Помимо того, что микробиота 
через модуляцию 5-HT, грелина и лептина может влиять на ГР, она способна непо-
средственно модулировать концентрацию ГР в макроорганизме через ось ГР/IGF-1 
(фактор роста инсулина-1) [144, 145, 147]. Недавно было показано, что штамм бак-
терии Lactobacillus plantarum (LpWJL) эффективно стимулировал рост молодых мы-
шей в условиях дефицита питательных веществ. Ежедневное пероральное введение 
LpWJL или экстрактов его клеточной стенки повышали циркулирующие уровни IGF–1 
и стимулировали рост у недоедающих молодых мышей. Авторы предполагают, что 
LpWJL или экстракты его клеточной стенки стимулируют рецепторы NOD2 в эпите-
лиальных клетках кишечника и  тем самым поддерживают постнатальный рост по 
оси ГР/IGF-1/инсулин, несмотря на хроническое недоедание [145]. Примечательным 
является тот факт, что сами ГР могут влиять на состав и метаболическую активность 
микробиоты [144, 146]. Таким образом, имеется двунаправленная связь между ГР 
и микробиотой макроорганизма [144]. 

Существуют данные, что симбионтная микробиота/пробиотики могут влиять 
на  концентрацию нейротрофического фактора мозга (BDNF) и  на нейрогенез [148–
150] (рис. 2). Продукты метаболизма микробиоты, например КЦЖК, могут стимули-
ровать нейрогенез в организме-хозяина [148, 149, 151]. Ранее нами было показано, что 
в результате ферментации LAB образуются метаболиты, которые могут стимулировать 
необратимую дифференцировку клеток PC12 в нейроноподобные структуры, а также 
процессы нейритогенеза. При этом при длительном культивировании дифференциро-
ванных клеток РС12 (около 1 месяца) имело место изменение нейротрансмиттерного 
фенотипа клеток, которые приобретали способность реагировать на аппликацию глу-
тамата [54]. Эти продукты обладают значительным потенциалом активировать высво-
бождение кальция из внутриклеточных депо и стимулировать рецептор-управляемый 
вход кальция в различных типах клеток и тканей [20, 54]. Недавно было продемонстри-
ровано, что пероральное введение лактата стимулировало выработку факторов роста 
и процессы нейрогенеза в гиппокампе взрослых мышей [152]. 

Нейротрофические факторы играют центральную роль в процессах дифференци-
ровки и выживания нейронов, а также в синаптической пластичности и могут иметь 
потенциал для облегчения симптомов нейродегенеративных заболеваний [153, 154]. 
Поэтому метаболиты симбионтной микробиоты имеют огромное значение для нор-
мального функционирования макроорганизма, начиная с  внутриутробного развития 
и кончая процессами старения.
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Половые гормоны и микробиота
Половые гормоны и микробиота оказывают взаимное влияние друг на друга. При-

чем у  женщин сообщество микроорганизмов многочисленнее и  разнообразнее, чем 
у мужчин [171]. Во время беременности у женщин происходят значительные измене-
ния состава микробиоты, которые могут приводить к увеличению инсулинорезистент-
ности и ожирению [172]. Эстрогены (стероидные гормоны) активируют ядерные ре-
цепторы ERα и ERβ, а также GPCR [124, 171, 173]. Помимо репродуктивной системы, 
эти рецепторы распределены в различных тканях и органах, таких как печень, почки, 
сердечно-сосудистая система, скелетные мышцы, мозг, почки, эндометрий, ЖКТ, осо-
бенно толстый кишечник, жировая ткань и др. [173–175]. Таким образом, эстрогены 
вовлечены в  жизненно важные процессы макроорганизма. Эпидемиологические ис-
следования указывают на  высокую частоту появления синдрома раздраженного ки-
шечника у  женщин, что подразумевает влияние половых гормонов на  его патогенез 
[176]. Эстрогены и  эстрогеноподобные вещества могут влиять на микробное разно-
образие [175]. Более того, эстрогены организма-хозяина, как принимаемые с пищей, 
так и вырабатываемые в организме, могут метаболизироваться кишечной микробиотой 
[171, 174]. Эти метаболиты могут стимулировать рост определенных типов бактерий 
[174]. Набор генов микробиоты, которые продуцируют ферменты, метаболизирующие 
эстроген, был назван «эстроболом». Фитоэстрогены могут стимулировать рост дру-
жественной микробиоты у  женщин в  постменопаузе [177]. Помимо этого, бактерии 
с  активностью β-глюкуронидазы и  β-глюкозидазы могут деконъюгировать конъюги-
рованные эстрогены, выделяемые с желчью [124, 171, 174]. Эти деконъюгированные 
эстрогены воздействуют на ER, расположенные в соответствующих органах и тканях, 
указанных выше. Однако избыточная активность β-глюкуронидазы экстроболома мо-
жет провоцировать синдром поликистозных яичников у женщин [178].

Микробиота кишечника значительно влияет на  деглюкуронирование андрогенов 
(тестостерона и  дигидротестостерона), особенно в  дистальных отделах кишечника 
[179]. Было показано, что уровни половых стероидных гормонов коррелируют с раз-
нообразием и составом кишечной микробиоты как у мужчин, так и у женщин [180].

ЗАКЛЮЧЕНИЕ

Накапливается все больше данных, свидетельствующих о том, что микробиота мо-
жет участвовать в нейроэндокринных реакциях макроорганизма. Микробиота и осо-
бенно ее метаболиты могут участвовать в  высвобождении гормонов из ЭЭК ЖКТ. 
Микробиота может синтезировать нейротрансмиттеры, тем самым оказывая влияние 
на дофамин-, холин-, глутамат-, серотонин- и ГАМК-ергические системы макроорга-
низма. Пробиотические микроорганизмы способны стимулировать выработку BDNF 
и положительно влиять на синаптическую пластичность. Более того, микробиота спо-
собна синтезировать некоторые типы нейротрофических факторов. Поэтому метабо-
литы симбионтной микробиоты имеют огромное значение для нормального функцио-
нирования макроорганизма, начиная с внутриутробного развития и кончая процессами 
старения. В настоящий момент, используя современные методы секвенирования, ис-
следователи получают все больше подтверждений влияния микробиоты и метаболома 
на метаболическое здоровье организма-хозяина. Надо понимать, что интегральная фи-
зиология макроорганизма является продуктом сложных взаимодействий между орга-
нами и системами органов, включая микробиом как эндокринный орган. Поэтому необ-
ходимо критически оценивать возможное влияние того или иного метаболита или типа 
бактерий на метаболическое здоровье организма-хозяина и с большой осторожностью 
применять их на  практике. Тем не менее эта область исследований экспоненциаль-
но развивается, и появляется все больше данных об участии микробиома/метаболома 
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в процессах метаболизма, а также в патогенезе ряда заболеваний организма-хозяина. 
Детальное понимание процессов синтеза микробиотой и пробиотическими микроор-
ганизмами активных веществ/метаболитов позволит успешно применять соответству-
ющие бактерии и/или метаболиты в медицинской практике.
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Microbiota and the macroorganism are in constant interaction with each other. Symbiotic 
microbiota participates in a number of important physiological, biochemical and 
neuroendocrine functions of the macroorganism. Metabolic activity of microbiota in 
the gastrointestinal tract (GIT) helps to digest food, absorb nutrients and extract energy. 
GIT microbiota participates in the metabolic processes of protein, fat and carbohydrate 
metabolism, in gluconeogenesis and glycogenolysis, and also affects the feeling of hunger 
and satiety. In addition, microbiota is often considered as a metabolically active "organ", 
since the power of metabolic reactions of the intestinal microbiota is comparable to that 
of the liver of the host organism. Microbiota produces autoinducers (quorum-sensing 
substances), hormones, neurotransmitters, short-chain fatty acids (SCFA), secondary bile 
acids, growth factors, gaseous molecules and many other active substances. Microbial 
metabolites provide the main communication between the host organism and its microbial 
community and are of great importance for the normal functioning of the macroorganism, 
starting from intrauterine development and ending with the aging process. Moreover, 
changes in metabolic activity and/or the ratio of different types of microorganisms can lead 
to various metabolic disorders of the host organism. Conversely, a metabolic disorder of 
the host organism can lead to a change in the species composition of the microbiota. This 
review describes the influence of the microbiota and its metabolites on the neuroendocrine 
functions of the macroorganism and describes the corresponding mechanisms of this 
influence.
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