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Болезнь Паркинсона (БП) является возрастной нейродегенеративной патологией, ко-
торая характеризуется аномалиями дофаминергической системы мозга, альфа-сину-
клеинопатией и  двигательными расстройствами. В  медицинской литературе широко 
обсуждается связь вспомогательных репродуктивных технологий (ВРТ) с возможной 
предрасположенностью к  патологиям центральной нервной системы, однако экс-
периментальных работ на эту тему практически нет. В настоящем исследовании из-
учали влияние ВРТ (культивирование in vitro преимплантационных эмбрионов и эм-
бриотрансфер (embryo transfer  – ET)) на  проявление признаков, характерных для 
БП: нарушение координации движений, снижение плотности нейронов, в  том числе 
дофаминергических, а также накопление альфа-синуклеина в компактной части чер-
ной субстанции (КЧС). Потомков-самцов линии B6.Cg-Tg (трансгенная модель БП) 
и  линии C57BL/6 (далее по тексту  – дикий тип, WT), полученных с  применением 
ВРТ (группы B6.Cg-Tg ET и WT ET) либо путем естественного спаривания (группы 
B6.Cg-Tg CTL и WT CTL), исследовали в возрасте шести месяцев. Координацию дви-
жений и баланс тела изучали с помощью теста ротарод; плотность нейронов, а также 
накопление альфа-синуклеина в  КЧС оценивали иммуногистохимически. Было по-
казано, что для мышей B6.Cg-Tg, полученных без применения ВРТ (B6.Cg-Tg CTL), 
характерно снижение плотности нейронов, в том числе дофаминергических, а также 
накопление альфа-синуклеина в КЧС по сравнению с диким типом (WT CTL). Потомки 
дикого типа, полученные с применением ВРТ (WT ET), характеризовались ухудшением 
координации движений и баланса тела, а также снижением плотности нейронов в КЧС, 
в том числе дофаминергических. У потомков линии B6.Cg-Tg, полученных с примене-
нием ВРТ (группа B6.Cg-Tg ET), в КЧС было обнаружено повышенное накопление аль-
фа-синуклеина. Результаты исследования указывают на возможную связь применения 
современных репродуктивных технологий с повышением предрасположенности к раз-
витию нейродегенеративного процесса и появлению признаков, характерных для БП.
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ВВЕДЕНИЕ

Согласно онтогенетической гипотезе здоровья и  болезней Дэвида Баркера “The 
Developmental Origins of Health and Disease” (DOHaD), определенные события в ходе 
пренатального и раннего постнатального онтогенеза могут вызывать адаптивные из-
менения развивающегося организма, что может приводить к повышенному риску воз-
никновения различных патологий в более позднем возрасте [1]. Развивая эти представ-
ления, Мотренко предложила гипотезу “эмбриофетального происхождения болезней”, 
в которой указывается важнейшая роль наиболее ранних этапов развития [2]. Huang 
и  Sheng, анализируя результаты исследований, связанных с  применением вспомога-
тельных репродуктивных технологий (ВРТ), сформулировали гипотезу “гаметного 
и эмбриофетального происхождения заболеваний” [3].

В соответствии с упомянутыми гипотезами было подтверждено, что воздействия 
в пренатальном онтогенезе могут иметь большое значение для таких характеристик 
головного мозга, как нейропластичность [4]. Кроме того, существует достаточно много 
мета-анализов и когортных исследований, которые направлены на выявление возмож-
ной связи применения репродуктивных технологий с патологиями центральной нерв-
ной системы [5–12], причем выводы этих работ достаточно противоречивы. Между тем 
на основе большой проверенной базы данных было обнаружено, что культивирование 
in vitro на некоторых питательных средах может быть связано с повышенным риском 
рождения крупных для гестационного возраста младенцев [13–15]. В другой работе 
было установлено, что размер некоторых областей головного мозга у детей, рожден-
ных после применения процедур ВРТ, в том числе с использованием культивирования 
in vitro преимплантационных эмбрионов, увеличивается к 11-й неделе гестационного 
срока [16]. Полученные результаты подтверждают, что культивирование in vitro может 
оказывать серьезное воздействие на дальнейший онтогенез [11, 13, 17].

Влияние культивирования ранних эмбрионов in vitro на проявление определенных 
фенотипических черт потомков исследуют на  различных экспериментальных моде-
лях, созданных на животных [18–24]. У потомков мышей, рожденных после культи-
вирования in vitro и переноса эмбрионов, было обнаружено изменение двигательной 
активности, уровня тревожности и пространственной памяти, причем характер этих 
изменений может быть обусловлен особенностями выбранной линии и другими фак-
торами [18–20, 25]. Было показано, что в головном мозге мышей, рожденных после 
применения ВРТ, отмечается снижение синтеза некоторых белков и нейротрофинов, 
а также изменен уровень нейрогенеза [22–24]. 

Болезнь Паркинсона (БП) занимает второе место в мире среди нейродегенератив-
ных заболеваний человека [26–28]. Несмотря на сложную природу заболевания, иссле-
дователи уделяют достаточно много внимания онтогенетическим и  наследственным 
факторам при раннем проявлении БП [29]. Нигростриарная система головного мозга 
играет важнейшую роль в регуляции движений [28, 30, 31]. При БП происходят дегене-
ративные изменения в нигростриарной системе, в частности, в компактной части чер-
ной субстанции (КЧС) среднего мозга [26, 31]. По мере развития БП в головном мозге 
наблюдается потеря нейронов, сопровождающаяся образованием телец Леви [32, 33]. 
Эти дегенеративные изменения в наибольшей мере характерны для КЧС, в  которой 
происходит уменьшение числа дофаминергических нейронов, имеющих проекцию 
в стриатуме [30]. Снижение же стимуляции нейронов стриатума, ответственных за ак-
тивацию мышц агонистов и антагонистов, приводит к нарушению моторных функций 
[28, 30]. 

Альфа-синуклеин является белком, который принимает участие во многих процес-
сах, в том числе в регуляции биосинтеза, транспорта и хранения дофамина [28, 34]. 
При БП установлены две мутации (А53Т и А30Р) в гене SNCA альфа-синуклеина чело-
века, которые приводят к нарушению сборки белка и агрегации его мономеров [35, 36], 



35РЕПРОДУКТИВНЫЕ ТЕХНОЛОГИИ И БОЛЕЗНЬ ПАРКИНСОНА

следствием чего являются накопление альфа-синуклеина в нейронах головного мозга, 
в частности в КЧС, и расстройства, характерные для данной патологии [33, 34, 37]. 
Таким образом, в качестве маркеров БП выступают уменьшение числа дофаминовых 
нейронов в нигростриарном пути и накопление альфа-синуклеина в различных струк-
турах головного мозга, в частности в КЧС [33, 38].

Исследования, проведенные на мышах, показали, что отдаленные последствия при-
менения репродуктивных технологий могут проявиться не только в раннем, но и более 
позднем постнатальном онтогенезе [39], причем эти последствия могут иметь прово-
цирующий характер для определенных связанных с возрастом негативных изменений 
[23, 40]. Можно предположить, что культивирование in vitro эмбрионов может повли-
ять на проявление признаков, характерных для БП. Влияние процедур ВРТ на развитие 
нервной системы, а также на проявление и частоту нейропатологий раннего возраста 
широко обсуждается [7, 9, 10, 12, 41]. В работе, основанной на анализе клинических 
данных, было выявлено, что при применении ВРТ в отношении условно здоровых лю-
дей возрастает процент рожденных детей с  расстройствами аутистического спектра 
[7]. Между тем другое исследование, также основанное на анализе клинических дан-
ных, показало, что данная тенденция сохраняется при применении лишь некоторых 
репродуктивных технологий, а именно интрацитоплазматической инъекции спермато-
зоида – ИКСИ [41]. Если же исключить множественные роды и анализировать лишь 
случаи, когда рождается один ребенок, то тенденция исчезает [9]. В настоящее время 
какие-либо клинические данные о влиянии ВРТ на проявление возрастных нейроде-
генеративных патологий человека отсутствуют в силу того, что потомки, полученные 
с применением этих технологий, еще не достигли возраста, когда эти заболевания про-
являются. В связи со сложностью анализа клинических данных и этическими ограни-
чениями при работе с эмбрионами человека исследование влияния ВРТ на нервную 
систему потомства с использованием животных моделей является перспективным, од-
нако таких работ на данный момент крайне мало [18–22]. Более того, на сегодняшний 
день нет экспериментальных работ на животных моделях, в которых бы анализировали 
влияние ВРТ на проявление у потомков нейродегенеративных заболеваний.

Линия мышей B6.Cg-Tg(PrNp-SNCA*A53T)23Mkle (далее по тексту B6.Cg-Tg) 
с мутацией A53T в гене SNCA альфа-синуклеина человека была создана в Джексонов-
ской лаборатории (США) посредством трансгенеза (https://www.jax.org/strain/006823) 
[42]. Полулетальный ген SNCA с мутацией A53T есть не у всех потомков [43], поэтому 
среди сибсов могут быть особи как с БП (гемизиготы), так и без патологии (дикий тип). 
Для данной модели характерны возрастная нейродегенерация и симптомы синуклеи-
нопатии [44–47], что дает основание использовать данную линию в качестве модели 
БП человека. Для изучения БП на трансгенных мышиных моделях используют тест 
ротарод (РР), с помощью которого исследуют координацию движений и баланс тела 
[46, 48], а также применяют иммуногистохимические методы для оценки различных 
структур головного мозга [44, 48, 49]. Особый интерес для такого рода исследований 
представляет КЧС, в которой происходят существенные изменения при БП [34, 37]. 
Ранее мы подтвердили характеристики этой линии в том же возрасте для последующей 
оценки эффектов ВРТ [51].

Существует достаточно много клинических наблюдений и  экспериментальных 
работ, указывающих на  возможность изменения важных характеристик у  потомков, 
полученных с применением репродуктивных технологий [5–11; 39–41]. Культивиро-
вание in vitro преимплантационных эмбрионов мышей при различных условиях с по-
следующим их переносом самкам-реципиентам может вызвать долгосрочные измене-
ния экспрессии генов и белков, а также уровней метилирования ДНК некоторых генов 
в ткани головного мозга у рожденных после применения этих процедур потомков [21]. 
Ранее было показано, что животные, полученные после применения ВРТ, могут иметь 
отличия по числу нейронов в различных структурах головного мозга, а также иметь 
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нарушения поведения по сравнению с естественно зачатыми, причем результаты этих 
исследований зависят от различных факторов, в частности от линии мышей, исполь-
зуемых в качестве доноров и реципиентов, и от характера применяемых репродуктив-
ных технологий [18–20, 24, 25]. Исследования такого рода по отношению к моделям 
возрастных нейродегенеративных заболеваний отсутствуют, в  частности, до  нашего 
исследования не проводили работ по влиянию репродуктивных технологий на прояв-
ление характерных признаков у мышей, моделирующих БП. В нашей работе впервые 
сделана попытка изучить эффекты ВРТ на потомков мышей с признаками БП в сравне-
нии с эффектами, оказываемыми на мышей дикого типа.

Ранее нами было установлено снижение плотности нейронов в КЧС у мышей ли-
нии B6.Cg-Tg [51]. Целью данной работы было изучение эффектов культивирования 
эмбрионов in vitro c последующим эмбриотрансфером на  формирование фенотипа, 
характерного для БП, у  мышей линии B6.Cg-Tg c использованием мышей C57BL/6 
(дикий тип) в качестве контроля. Задачей настоящего исследования было оценить воз-
можное влияние на  потомков культивирования эмбрионов in vitro, в  частности, на: 
1) координацию движений и баланс тела; 2) общее число нейронов в КЧС, в том числе 
дофаминовых; 3) накопление альфа-синуклеина в КЧС.

МЕТОДЫ ИССЛЕДОВАНИЯ

Животные
Исследования проводили на  потомках мышей линии B6.Cg-Tg(PrNp-

SNCA*A53T)23Mkle (далее в тексте B6.Cg-Tg). Мыши B6.Cg-Tg, моделирующие БП, 
были получены в результате трансгенеза и имеют мутацию A53T в гене SNCA альфа-
синуклеина человека. В качестве контроля использовали мышей C57BL/6 (дикий тип – 
wild type; далее в тексте WT), на основе которых была создана линия B6.Cg-Tg. В экс-
перименте были исследованы самцы-сибсы двух линий мышей (C57BL/6, B6.Cg-Tg), 
полученные как после естественного спаривания самок C57BL/6 (5 самок) с гемизи-
готными самцами B6.Cg-Tg (5 самцов), так и после применения репродуктивных тех-
нологий, а именно культивирования in vitro и переноса эмбрионов в репродуктивные 
пути самок-реципиентов (5 самок). В результате было получено по пять пометов для 
каждого “способа размножения”. У полученных потомков мышей проводили геноти-
пирование. В опытную группу выбирали тех животных, у которых был обнаружен ген 
SNCA с мутацией А53Т (B6.Cg-Tg), остальных (мыши C57BL/6, у которых ген SNCA 
с мутацией А53Т отсутствовал) использовали в качестве контроля (дикий тип). Графи-
чески дизайн эксперимента представлен на рис. 1.

Животных содержали в SPF-виварии Института цитологии и генетики СО РАН (Но-
восибирск, Россия) в индивидуально вентилируемых клетках OptiMice (Animal Care, 
США) размером 34.3 × 29.2 × 15.5 см при температуре 22–24°C и влажности 40–50% 
с инвертированным 12 : 12-часовым циклом дня-ночи (рассвет в 3 ч утра); в качестве 
подстила использовали березовую щепу фракционную для лабораторных животных 
(ТУ 16.10.23-001-0084157135-2019). Все животные имели свободный доступ к стан-
дартизированному комбикорму для лабораторных мышей и крыс “Дельта Фидс” ЛбК 
120 Р-22, ГОСТ 34566-2019 (БиоПро, Россия) и очищенной воде “Северянка” (Экопро-
ект, Россия), обогащенной минеральными добавками.

Были сформированы следующие группы (рис. 1): (1) самцы С57BL/6, рожденные 
естественным путем (группа WT CTL); (2) самцы B6.Cg-Tg, рожденные естественным 
путем (группа B6.Cg-Tg CTL); (3) самцы С57BL/6, рожденные c применением ВРТ 
(группа WT ET – embryo transfer); (4) самцы B6.Cg-Tg, рожденные c применением ВРТ 
(группа B6.Cg-Tg ET).
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Рис. 1. Дизайн эксперимента. ART  – assisted reproductive technologies (вспомогательные репродуктивные 
технологии); B6.Cg-Tg – трансгенная модель болезни Паркинсона; WT – wild type (дикий тип, C57BL/6); 
группа WT CTL – самцы С57BL/6, рожденные естественным путем: число животных, взятых для исследо-
вания в тесте ротарод n = 14, на оценку мозга n = 9; группа B6.Cg-Tg CTL – самцы B6.Cg-Tg, рожденные 
естественным путем: число животных, взятых для исследования в тесте ротарод и на оценку мозга n = 9; 
группа WT ET – самцы С57BL/6, рожденные c применением ВРТ: число животных, взятых для исследования 
в тесте ротарод и на оценку мозга n = 4; группа B6.Cg-Tg ET – самцы B6.Cg-Tg, рожденные c применением 
ВРТ: число животных, взятых для исследования в тесте ротарод и на оценку мозга n = 4.

Получение эмбрионов требуемой стадии развития
Самкам мышей линии C57BL/6 (n = 5) в  возрасте 8–16 недель проводили стан-

дартную гормональную стимуляцию яичников: делали внутримышечно инъекции 
5 ME гонадотропина сыворотки жеребых кобыл (Фоллигон, Intervet, Нидерланды) 
и через 48 ч 5 МЕ хорионического гонадотропина человека (Хорулон, Intervet, Нидер-
ланды). Самок на ночь ссаживали с фертильными самцами линии B6.Cg-Tg. Спари-
вание проверяли по наличию вагинальной пробки на следующее утро (первый день 
после спаривания; day post coitum 1, dpc 1). Беременных самок подвергали эвтаназии 
при помощи CO2 на  третий день после спаривания (dpc 3). Яйцеводы и  рога матки 
промывали средой FertiCultTM Flushing (FertiPro, Бельгия), чтобы получить эмбрионы 
на стадии 8 клеток. Полученные эмбрионы оценивали под стереомикроскопом S8 APO 
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(Leica Microsystems, Германия) при увеличении ×80. Эмбрионы без видимых дефектов 
и с целыми прозрачными оболочками (zonae pellucidae) отбирали для культивирова-
ния in vitro, а некачественные эмбрионы (поврежденных бластомеров более 25%) либо 
с повреждением прозрачной оболочки – отбраковывали.

Культивирование in vitro и перенос эмбрионов
Среда KSOM (K-modified simplex optimized medium) является одной из самых по-

пулярных в  экспериментах с  эмбрионами мышей и  других экспериментальных жи-
вотных [52]. Выбор нами среды KSOMaa был обоснован стремлением свести к ми-
нимуму нарушение экспрессии генов в ходе культивирования эмбрионов in vitro [53]. 
Дробящиеся эмбрионы мышей на стадии 8-ми клеток без видимых дефектов помеща-
ли на чашки Петри (35 мм; Corning, США) в капли среды KSOMaa (Merck, Германия) 
объемом 20 мкл по 5–11 штук на каплю и культивировали под минеральным маслом 
(Merck, Германия) в СО2-инкубаторе New BrunswickTM Galaxy 48R (Eppendorf, Герма-
ния) в стандартных условиях (5% СО2, 37°С и влажности 90%) в течение 48 ч. Развитие 
эмбрионов оценивали под стереомикроскопом S8 APO (Leica Microsystems, Германия). 
Через 48 ч нормально развивающиеся бластоцисты были перенесены в  правый рог 
матки самок-реципиентов (в общей сложности пять самок; 10–15 бластоцист на сам-
ку), которые были предварительно спарены со стерильными самцами и  находились 
на стадии третьего дня псевдобеременности. Всего трансплантировали 66 бластоцист.

В качестве самок-реципиентов для переноса эмбрионов использовали межлиней-
ных гибридов мышей CD1 × C57BL/6 (n = 5). Самок в проэструсе или эструсе ссажива-
ли с вазэктомированными самцами линии CD1, проверенными на стерильность. Через 
8–12 ч после спаривания самок проверяли на наличие вагинальных пробок. День, ког-
да была обнаружена вагинальная пробка, считали первым днем псевдобеременности.

При подготовке к хирургической операции по переносу эмбрионов самкам-реци-
пиентам вводили внутрибрюшинно 0.01 мг/кг медетомидина гидрохлорида (Медитин, 
1 мг/мл; Апи-Сан, Россия) и через 10 мин 50 мг/кг золетила (Zoletil; Virbac, Франция). 
Затем подкожно вводили 0.01 мл амоксициллина (амоксициллина тригидрат, 150 мг/мл; 
Апи-Сан, Россия). Шерсть в месте разреза сбривали на правой стороне спины на 1 см 
от нижнего ребра в вентральном направлении, кожу обрабатывали 70%-ным этиловым 
спиртом. Кожу и подлежащий мышечный слой в области над маткой разрезали дорсо-
вентрально на расстоянии 5 мм от нижнего ребра в каудальном направлении. Висце-
ральный жировой слой, соединенный с яичником, яйцеводом и верхней частью матки, 
захватывали пинцетом и приподнимали. Эмбрионы переносили стеклянным капилля-
ром в правый рог матки в 5 мкл среды FertiCultTM Flushing (FertiPro, Бельгия). Разрез 
зашивали рассасывающейся хирургической нитью (Vicryl; Johnson & Johnson, США) 
и присыпали антибиотиком (амоксициллина тригидрат; Апи-Сан, Россия), после чего 
операционный шов обрабатывали антисептиком (Ацербин, Montavit Pharmazeutische 
Fabrik GmbH, Австрия). 

Генотипирование потомков мышей
По достижении месячного возраста у потомков мышей, полученных в результате 

естественного спаривания либо после применения ВРТ, был взят кусочек уха для ге-
нотипирования. Его помещали в пробирку с 400 мкл лизирующего буфера (10% SDS 
и 20 мг/мл протеиназы К) и инкубировали при 52ºC со встряхиванием на центрифу-
ге-вортексе FVL-2400N Combi-spin (BioSan, Латвия) в течение 1.5 ч до полного рас-
творения. Пробирку с лизатом помещали в холодильник при 4ºC на 10–15 мин. Затем 
к раствору добавляли 120 мкл 6M NaCl с последующим встряхиванием на центрифу-
ге-вортексе и центрифугировали в течение 15 мин при 13000 об/мин на центрифуге 
Sigma 4-16К (Sigma Laborzentrifugen GmbH, Германия). Супернатант повторно цент-
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рифугировали в течение 10 мин при 13000 об/мин. Собирали 100 мкл супернатанта, 
добавляли 200 мкл холодного 96%-ного этанола и перемешивали. После серии циклов 
охлаждения, перемешивания, центрифугирования, растворения в этаноле и высушива-
ния общее содержание ДНК измеряли на спектрофотометре NanoDrop (Thermo Fisher 
Scientific, США). Образцы хранили в морозильной камере при –20ºC. 

Для проведения ПЦР на льду в ПЦР-пробирки добавляли по 9 мкл MasterMix (ди-
стиллированная вода, PCR-буфер х10/5/2, соответствующие праймеры, а также dNTP, 
Mg2+ и  TaqPol), амплификацию проводили с  использованием амплификатора T100 
Thermal Cycler (BioRad, США). После амплификации в ПЦР-пробирки добавляли по 
3 мкл Green буфера для окрашивания. В каждую первую лунку в ряду было добавлено 
3.5 мкл маркера, в остальные лунки добавлялось по 10 мкл окрашенной пробы. После 
этого источник тока выставляли на 60 мин на 130 В. Электрофорез был проведен с мар-
кером 100 пн (трансген – 500 пн, внутренний положительный контроль – 324 пн). Ре-
зультат амплификации был оценен при помощи системы гель-документирования Gel 
Doc XR+ (BioRad, США).

Исследование координации движений и баланса тела
В возрасте шести месяцев исследовали потомков мышей, полученных после куль-

тивирования in vitro и переноса эмбрионов: линии B6.Cg-Tg, у которых было подтвер-
ждено наличие гена SNCA с мутацией A53T и линии С57BL/6 дикого типа из тех же 
пометов, у которых по результатам генотипирования данного трансгена обнаружено не 
было (рис. 1). Наряду с этим исследовали потомков мышей, полученных в ходе есте-
ственного спаривания без применения репродуктивных технологий: линии B6.Cg-Tg 
и  линии С57BL/6 (дикий тип). Оценивали координацию движений и  баланс тела 
с помощью теста РР. За два дня до начала тестирования животные были изолирова-
ны друг от друга и помещены в чистую индивидуальную клетку OptiMice размером 
34.3 × 29.2 × 15.5 см. Перед тестированием каждого животного оборудование обраба-
тывали 6%-ным раствором перекиси водорода.

Тест РР с  ускорением используют для оценки координации движений и  баланса 
тела; в  частности, его применяют при изучении генетических моделей БП, создан-
ных на мышах [46]. Устройство Ugo Basile 47600 (Ugo Basile, Италия) представляет 
собой пять дорожек шириной 5.7 см с барабанами диаметром 3 см, расположенных 
на высоте 16 см и разделенных плоскими круглыми деталями. Прибор имеет размеры 
27.94 × 43.18 × 38.10 см, вес 6.4 кг и может давать ускорение 2–80 об/мин. Ротарод был 
запрограммирован на вращение с линейно возрастающей скоростью от 5 до 40 об/мин 
за 300 с. Для повышения надежности результатов теста проводили три сессии для каж-
дого тестируемого животного с перерывами в одну минуту. Оценивали время до паде-
ния мыши с барабана, а также скорость его вращения, при котором оно произошло для 
каждой сессии.

Интракардиальная перфузия
В возрасте шести месяцев у мышей линии B6.Cg-Tg и контрольных животных ди-

кого типа (С57BL/6) из тех же пометов, полученных после культивирования in vitro 
и  переноса эмбрионов в  репродуктивные пути самок-реципиентов, а  также мышей 
этих линий, полученных после естественного спаривания, производили интракарди-
альную перфузию для фиксации ткани головного мозга, как описано ранее [51]. Мы-
шей наркотизировали путем введения внутрибрюшинно медетомидина гидрохлорида 
(Медитин, 0.01 мг/кг; Апи-Сан, Россия) и  через 10 мин золетила (Zoletil, 50 мг/кг; 
Virbac, Франция). После этого животным проводили перфузию, вводя в кровеносную 
систему сначала 15 мл фосфатно-солевого буфера (PBS), а затем 15 мл 10%-ного рас-
твора формалина. Мозг извлекали, помещали в 30%-ный раствор сахарозы в PBS с до-
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бавлением 5 мл 10%-ного формалина для обезвоживания и последующей фиксации 
и хранили при 4°C в течение следующих 2 недель, пока материал не опустится на дно 
пробирки. Затем образцы мозга погружали в О.C.Т Tissue-Tek (Sakura Finetek, США), 
после чего замораживали и хранили при –70°С в горизонтальном низкотемпературном 
морозильнике MDF-594 (Sanyo, Япония).

Приготовление замороженных срезов мозга
Были изготовлены замороженные срезы КЧС (substantia nigra pars compacta  – 

SNpc). Данная структура была идентифицирована согласно атласу Паксиноса 
и Франклина [54] на расстоянии 3.08–3.52 мм от брегмы. Срезы толщиной 10 мкм 
готовили на криотоме HM550 OP (Thermo Scientific, США) при –25°C и помещали 
на предметные стекла с адгезивным покрытием PCI, со шлифованной кромкой и с ко-
лорированным краем (CITOTEST, Китай) для последующего иммуногистохимиче-
ского анализа.

Иммуногистохимический анализ и подсчет плотности нейронов
Окрашивание образцов проводили в соответствии с протоколами производителей 

наборов антител. Перед процедурой окрашивания срезы обезвоживали с последующей 
регидратацией в течение пяти минут в PBS. После этого проводили демаскировку ан-
тигенов, индуцированную нагреванием, в 10 мМ щелочном цитратном буфере (pH 9) 
при 95°C на водяной бане TW-2.02 (Elmi, Латвия) в течение 15 мин. Затем срезы из-
влекали из буфера и охлаждали до комнатной температуры. После этого образцы три-
жды промывали в буферном растворе PBS-Tween: PBS с добавлением 0.1% Tween-20 
(P9416-100 мл; Sigma-Aldrich, США) в течение 15 мин. Далее каждый срез покрывали 
буфером Protein Block (ab64226; Abcam, Великобритания) на 30 мин с последующим 
удалением избытка жидкости в соответствии с рекомендациями производителя.

После процедуры промывания и воздействия буфером Protein Block добавляли 50 мкл 
первичного антитела и оставляли на ночь при температуре 4°C во влажной темной ка-
мере. Используемые концентрации антител составляли 1 : 800 для anti-NeuN (ab177487, 
Abcam, Великобритания) и 1 : 450 для анти-тирозингидроксилазы (Tyrosine Hydroxylase – 
TH) anti-TH (ab6211; Abcam, Великобритания). Для определения альфа-синуклеина 
добавляли 50 мкл первичного антитела alpha-Synuclein Antibody (NB110-61645, Novus 
Biologicals, Littleton, CO, США) в концентрации 1 : 600 и оставляли на 36 ч при темпе-
ратуре 4°C во влажной темной камере. После воздействия первичным антителом срезы 
промывали в буфере PBS-Tween в течение 15 мин, удаляли избыток жидкости, добавляли 
50 мкл вторичного антитела Goat Anti-Rabbit IgG H&L AF488 (ab150077; Abcam, Вели-
кобритания) в концентрации 1 : 700, а затем оставляли во влажной темной камере на два 
часа при температуре 4°C. Далее образцы промывали в буферном растворе PBS-Tween 
в течение 15 мин, удаляли избыток жидкости и помещали образцы в среду ProLong, Glass 
AntifadeMountant (Thermo P36982; Thermo Fisher Scientific, США). При оценке плотно-
сти альфа-синуклеина в нейронах мы модифицировали опубликованные ранее прото-
колы [55, 56]. В частности, с целью идентификации ядер клеток в черной субстанции 
к срезам дополнительно добавляли 80 мкл DAPI, оставляли в темной влажной камере 
в течение 15 мин и затем дважды промывали в PBS в течение 3 мин.

Оценку плотности нейронов, меченных различными антителами, проводили сле-
пым методом два независимых исследователя с  использованием микроскопа Axio 
Imager.M2 (Carl Zeiss, Германия) с камерой Zeiss Axiocam 506 mono (Carl Zeiss, Гер-
мания) при увеличении × 200. Число меченых нейронов подсчитывали вручную ми-
нимум в четырех срезах на животное, в поле зрения 5000 мкм2 (длина 50 мкм, ширина 
100 мкм; одно поле зрения на один срез). Для создания поля зрения использовали про-
грамму ImageJ (National Institutes of Health, США). Плотность нейронов рассчитывали 
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как число нейронов на объем (мм3), как было описано ранее [51]. Вычисляли число 
клеток, меченных антителами в интересующей области, усредненное с четырех сре-
зов для каждого животного, и рассчитывали среднюю плотность (миллионов клеток, 
n × 106) в объеме (мм3): среднее число нейронов на мкм2 при толщине среза 10 мкм ум-
ножали на × 105, чтобы рассчитать, сколько миллионов клеток в мм3. Работы проводи-
ли с использованием оборудования ЦКП “Центр генетических ресурсов лабораторных 
животных” Института цитологии и генетики СО РАН, а также ЦКП “Микроскопиче-
ский анализ биологических объектов” Института цитологии и генетики СО РАН.

Статистический анализ
Анализ результатов поведенческих тестов проводили с использованием программ-

ного пакета STATISTICA v. 12.0 (StatSoft, Inc., США). Данные были проверены на нор-
мальность с помощью теста Шапиро–Уилка. Результаты поведенческого теста и плот-
ности нейронов (общей, дофаминовых и с альфа-синуклеином) оценивали с помощью 
двухфакторного ANOVA: “линия” и  “способ размножения” с  последующим апосте-
риорным сравнением с  использованием критерия Ньюмена–Кейлса (Newman–Keuls 
post-hoc test). Данные представлены как среднее ± стандартная ошибка среднего 
(М ± SEM). Уровень значимости рассматривался как p < 0.05.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

В результате культивирования in vitro в среде KSOMaa в течение 48 ч в среднем по 
пяти самкам 88.0 ± 3.9% эмбрионов достигли стадии бластоцисты. После трансплан-
тации бластоцист пяти самкам-реципиентам все они принесли потомство. В среднем 
родилось 3.2 ± 0.6 потомка на самку-реципиента. В общей сложности было получено 
16 рожденных потомков (всего восемь самцов и восемь самок) из 66 трансплантиро-
ванных зародышей (эффективность в среднем составила 25.9 ± 4.3%).

Генотипирование показало, что после культивирования in vitro и переноса эмбрио-
нов было получено четыре гемизиготных самца мышей B6.Cg-Tg, моделирующих БП, 
и четыре самца дикого типа, у которых гена SNCA с мутацией A53T обнаружено не 
было. Кроме того, по результатам генотипирования было выявлено, что из потомков, 
полученных путем естественного спаривания, т. е. без применения репродуктивных 
технологий, 9 самцов являются мышами линии B6.Cg-Tg, а 14 самцов представляют 
дикий тип (С57BL/6), у  которых гена SNCA с  мутацией A53T обнаружено не было. 
Все животные были протестированы в тесте РР. Для исследования мозга были взяты 
все животные обеих линий, полученные с применением репродуктивных технологий, 
а также все 9 самцов B6.Cg-Tg, полученных без применения репродуктивных техноло-
гий. Из 14 самцов дикого типа (С57BL/6), полученных без применения репродуктив-
ных технологий, для исследования мозга было случайным образом взято 9 животных.

Различия по латентному времени до  падения животного в  тесте РР представле-
ны на рис. 2. Двухфакторный анализ ANOVA не показал влияния факторов “линия” 
[F(1,27) < 1] и “способ размножения” [F(1,27) < 1] на латентное время до падения животного, 
однако выявил взаимодействие между этими факторами [F(1,27) = 5.66; p < 0.05]. Апосте-
риорное сравнение post hoc показало, что у самцов мышей линии С57BL/6, получен-
ных из эмбрионов, которые развивались в культуре in vitro (группа WT ET), латентное 
время до падения животного было достоверно меньше (p < 0.05), чем у самцов этой 
линии, полученных без применения репродуктивных технологий (группа WT CTL), 
и меньше (p < 0.05), чем у мышей, моделирующих БП (группа B6.Cg-Tg-ЕТ), рожден-
ных после применения репродуктивных технологий (рис. 2).

Различия по общей плотности нейронов в КЧС представлены на рис. 3. Двухфак-
торный ANOVA показал влияние факторов “линия” [F(1,22) = 17.23; p < 0.001] и “способ 
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размножения” [F(1,22) = 11.98; p < 0.01] на общее число нейронов в КЧС, однако взаи-
модействия между этими факторами обнаружено не было [F(1,22) < 1]. Апостериорное 
сравнение выявило различие плотности нейронов в КЧС у потомков мышей разных ли-
ний, рожденных без применения репродуктивных технологий: в группе B6.Cg-Tg CTL 
она была меньше (p < 0.05) по сравнению с  группой WT CTL (рис. 3). Кроме того, 
было установлено уменьшение (p < 0.05) плотности нейронов в  КЧС у  потомков 
мышей группы WT ET по сравнению с WT CTL и B6.Cg-Tg ET (рис. 3). У потомков 
мышей B6.Cg-Tg, полученных с  применением репродуктивных технологий (группа 
B6.Cg-Tg ET), было обнаружено уменьшение (p < 0.05) плотности нейронов в КЧС по 
сравнению с потомками мышей группы B6.Cg-Tg CTL (рис. 3).

Различия по плотности дофаминовых нейронов в КЧС представлены на рис. 4. Двух-
факторный ANOVA не показал влияния факторов “линия” [F(1,22) < 1] и взаимодействия 
между факторами “линия” и “способ размножения” [F(1,22) < 1], однако выявил влияние 
фактора “способ размножения” [F(1,22) = 8.06; p < 0.01] на число дофаминовых нейронов 
в КЧС. Апостериорное сравнение post hoc показало различие по плотности дофаминовых 
нейронов в КЧС у потомков мышей разных линий, рожденных без применения репродук-
тивных технологий: в группе B6.Cg-Tg CTL она была меньше (p < 0.05) по сравнению 
с группой WT CTL (рис. 4). Кроме того, было установлено уменьшение (p < 0.05) числа 
дофаминовых нейронов в КЧС у потомков мышей C57BL/6, полученных с применением 
репродуктивных технологий (группа WT ET), по сравнению с потомками этой же линии 
(группа WT CTL), полученными без применения репродуктивных технологий (рис. 4).

Различия по плотности нейронов с  альфа-синуклеином в  КЧС представлены 
на рис. 5. Двухфакторный ANOVA показал влияние фактора “линия” [F(1,22) = 145.10; 
p < 0.001] на данный показатель, но отсутствие влияния фактора “способ размноже-
ния” [F(1,22) < 1]; при этом было выявлено взаимодействие между факторами “линия” 
и “способ размножения” [F(1,22) = 9.34; p < 0.01] на число нейронов с альфа-синукле-
ином в КЧС. Апостериорное сравнение post hoc показало межлинейные различия по 
этому показателю. У потомков мышей C57BL/6, рожденных без применения репро-
дуктивных технологий (группа WT CTL), плотность нейронов с альфа-синуклеином 
в КЧС была меньше (p < 0.001) по сравнению с мышами группы B6.Cg-Tg CTL, моде-
лирующими БП (рис. 5). У потомков мышей группы B6.Cg-Tg ET плотность нейронов 
с альфа-синуклеином в КЧС была больше (p < 0.01 и p < 0.001) по сравнению с таковой 
у потомков мышей групп B6.Cg-Tg CTL и WT ET (рис. 5).
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Рис. 2. Ротарод тест. Латентное время до падения животного. WT CTL – потомки дикого типа C57BL/6, по-
лученные путем естественного спаривания без применения вспомогательных репродуктивных технологий 
(ВРТ); B6.Cg-Tg CTL – потомки B6.Cg-Tg, полученные без применения ВРТ; WT ET – потомки дикого типа 
C57BL/6, полученные c применением ВРТ; B6.Cg-Tg ЕТ – потомки B6.Cg-Tg, полученные с применением 
ВРТ. * p < 0.05 между WT ET и WT CTL; # p < 0.05 между B6.Cg-Tg ET и WT ET.



43РЕПРОДУКТИВНЫЕ ТЕХНОЛОГИИ И БОЛЕЗНЬ ПАРКИНСОНА

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для болезни Паркинсона характерны нарушения в нигростриарном пути, в част-
ности, избирательная потеря дофаминергических нейронов и  наличие специфиче-
ских включений (телец Леви) в  связи с  накоплением альфа-синуклеина [26, 31, 33, 
58]. В нашей работе было установлено снижение общей плотности нейронов в КЧС 
у самцов линии B6.Cg-Tg, рожденных без применения ВРТ (группа B6.Cg-Tg CTL), 
по сравнению с самцами дикого типа, также рожденными естественным путем (группа 
WT CTL), что подтверждает более ранние наблюдения [51]. Обнаруженное снижение 
плотности нейронов может быть связано с  окислительным стрессом, которому под-
вергаются нейроны КЧС при БП [58], либо обусловлено низким уровнем аутофагии 
в данной области головного мозга [44].

Дофаминовые нейроны КЧС участвуют в регуляции двигательной активности [59]. 
В нашем исследовании у мышей B6.Cg-Tg было обнаружено снижение плотности до-

Рис. 3. Плотность нейронов в компактной части черной субстанции (substantia nigra pars compacta – SNpc), 
нейроны мечены антителами против нейронального маркера (neuronal marker – NeuN). (a) – число нейронов 
в мм3; (b) – cхематическое обозначение исследуемой области в головном мозге. (c–f) – микрофотографии 
срезов в компактной части черной субстанции; (с) – потомки дикого типа C57BL/6, полученные без приме-
нения ВРТ (WT CTL); (d) – потомки B6.Cg-Tg, полученные без применения ВРТ (B6.Cg-Tg CTL); (e) – по-
томки дикого типа C57BL/6, полученные с применением ВРТ (WT ET); (f) – потомки B6.Cg-Tg, полученные 
с применением ВРТ (B6.Cg-Tg ET). Пунктирные линии обозначают границы черной субстанции (substantia 
nigra). * p < 0.05 между B6.Cg-Tg CTL и WT CTL, а также между WT ET и WT CTL; + p < 0.05 между B6.Cg-
Tg ET и B6.Cg-Tg CTL; # p < 0.05 между B6.Cg-Tg ET и WT ET.
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фаминовых нейронов в КЧС по сравнению с сибсами дикого типа. Ранее было установ-
лено, что такого рода нарушения в КЧС могут приводить к нарушениям двигательной 
активности при БП [60]. Наряду с этим в нашей работе было обнаружено большее чи-
сло нейронов с альфа-синуклеином в КЧС у мышей B6.Cg-Tg по сравнению с сибсами 
дикого типа, что характерно для различных линий мышей с трансгеном SNCA с мута-
цией A53T, которых используют в качестве моделей БП [61, 62]. Ранее была установле-
на связь между наличием включений альфа-синуклеина в нейронах с их гибелью [63], 
что соответствует результатам нашей работы. Накопление нерастворимых фибрилл 
альфа-синуклеина повреждает синаптические везикулы и различные органеллы ней-
ронов, нарушая их функционирование [64], что приводит к неконтролируемому тремо-
ру, ригидности, моторным и когнитивным расстройствам, дисфункции вегетативной 
нервной системы и нарушению сна по мере развития БП [65].

Первые проявления нарушений двигательной активности у  мышей с  трансгеном 
SNCA с мутацией A53T происходят уже в возрасте шести месяцев, что связано с по-
вышением накопления альфа-синуклеина в нейронах различных структур головного 

Рис. 4. Плотность дофаминергических нейронов в компактной части черной субстанции (substantia nigra 
pars compacta  – SNC), нейроны мечены антителами против тирозингидроксилазы (tyrosine hydroxylase  – 
TH). (a) – число нейронов в мм3; (b) – схематическое обозначение исследуемой области в головном мозге. 
(c–f)  – микрофотографии срезов в  данной области; (c)  – потомки дикого типа C57BL/6, полученные без 
применения ВРТ (WT CTL); (d) – потомки B6.Cg-Tg, полученные без применения ВРТ (B6.Cg-Tg CTL); 
(e)  – потомки дикого типа C57BL/6, полученные с  применением ВРТ (WT ET); (f)  – потомки B6.Cg-Tg, 
полученные с применением ВРТ (B6.Cg-Tg ET). * p < 0.05 между B6.Cg-Tg CTL и WT CTL, а также между 
WT ET и WT CTL.
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Рис. 5. Плотность нейронов с альфа-синуклеином в компактной части черной субстанции (substantia nigra 
pars compacta  – SNC), нейроны мечены антителами против альфа-синуклеина, ядра нейронов окрашены 
DAPI; (a–d)  – микрофотографии срезов в  данной области (SNpc целиком; соответствующий фрагмент); 
(a) – потомки дикого типа C57BL/6, полученные без применения ВРТ (WT CTL); (b) – потомки B6.Cg-Tg, 
полученные без применения ВРТ (B6.Cg-Tg CTL); (c) – потомки дикого типа C57BL/6, полученные с приме-
нением ВРТ (WT ET); (d) – потомки B6.Cg-Tg, полученные с применением ВРТ (B6.Cg-Tg ET); (e) – число 
нейронов в мм3. (f) – схематическое обозначение исследуемой области в головном мозге. Пунктирные линии 
обозначают границы черной субстанции (substantia nigra). *** p < 0.001 между B6.Cg-Tg CTL и WT CTL;  
++ p < 0.01 между B6.Cg-Tg ET и B6.Cg-Tg CTL; ### p < 0.001 между B6.Cg-Tg ET и WT ET.
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мозга [43, 48, 62]. Однако патологические изменения нарастают постепенно; разные 
отделы мозга поражаются по мере развития заболевания каждый в свою очередь [66]. 
Координация движений и баланс тела у мышей, моделирующих БП, изменяются в раз-
ном возрасте в зависимости от среды обитания и других факторов [46, 67]. В настоя-
щем исследовании не было обнаружено отличий по этим параметрам между мышами 
B6.Cg-Tg и сибсами дикого типа в тесте РР с ускорением в возрасте 6 месяцев. Наши 
наблюдения согласуются с  результатами более ранних работ, в  которых в  возрасте 
8 месяцев не было обнаружено отличий по времени до падения в тесте РР у мышей 
линии B6.Cg-Tg от контрольных животных дикого типа [46, 67], хотя были выявлены 
отличия в других возрастах [67] или на фоне определенных воздействий [46].

ВРТ, в частности культивирование преимплантационных эмбрионов, используют 
в  репродуктивной медицине, и  влияние их на  здоровье потомства широко обсужда-
ется [3–17]. Однако экспериментальных работ, посвященных влиянию ВРТ на разви-
тие нервной системы потомков, крайне мало [21–24]. Это обстоятельство повышает 
актуальность проведенного нами исследования, в котором впервые были изучены от-
даленные последствия культивирования эмбрионов на  моторные функции потомков 
и особенности строения мозга не только у мышей дикого типа С57BL/6, но и у мышей 
B6.Cg-Tg, моделирующих БП.

Весьма интересным, на  наш взгляд, эффектом репродуктивных технологий было 
ухудшение координации движений и баланса тела, сопряженное со снижением общей 
плотности нейронов и плотности дофаминовых нейронов в КЧС у мышей дикого типа 
С57BL/6, рожденных после культивирования преимплантационных эмбрионов in vitro 
(группа WT ET). Ранее было показано, что применение таких репродуктивных техноло-
гий, как ЭКО и культивирование эмбрионов in vitro, приводит к снижению уровней ней-
ротрофических факторов, в том числе нейротрофического фактора мозга (brain-derived 
neurotrophic factor, BDNF), нейротрофического фактора глиального происхождения (glial 
cell-derived neurotrophic factor, GDNF) и фактора роста нервов (nerve growth factor, NGF) 
в некоторых отделах мозга мышей [23]. Установлено, что BDNF оказывает положитель-
ное влияние на дофаминовые нейроны в некоторых областях головного мозга мышей, 
в частности в КЧС [71]. Таким образом, у потомков дикого типа C57BL/6, полученных 
после применения ВРТ, может иметь место снижение уровней нейротрофических фак-
торов мозга. Именно этим может быть обусловлено обнаруженное нами снижение плот-
ности дофаминовых нейронов в КЧС у потомков этой группы, а также общей плотности 
нейронов, поскольку дофаминовые нейроны являются преобладающими в КЧС [33, 38].

Между тем не было обнаружено аналогичного снижения общей плотности нейронов 
у потомков B6.Cg-Tg, рожденных с применением ВРТ, по сравнению с потомками этой 
линии, полученными в результате естественного спаривания. Наиболее вероятным объ-
яснением этому может быть исходно сниженная плотность нейронов, в частности дофа-
минергических, у мышей B6.Cg-Tg по сравнению с диким типом C57BL/6. Очевидно, 
что если число нейронов уже снижено, эффект от каких-либо процедур, который приво-
дит к дальнейшему снижению, может оказаться менее заметным или даже неощутимым. 

У мышей группы B6.Cg-Tg ET, полученных с применением репродуктивных техно-
логий, было обнаружено больше нейронов с альфа-синуклеином в КЧС, чем у потом-
ков той же линии, рожденных после естественного зачатия. Это может быть связано 
с  изменением статуса метилирования репарационных ДНК тканей головного мозга 
вследствие влияния физических факторов при развитии ранних эмбрионов in vitro 
[13]. В дальнейшем это может повлиять на репарацию ДНК на более поздних этапах 
онтогенеза и увеличить экспрессию альфа-синуклеина в нейронах [22]. В ряде работ 
изучено, как характер питательной среды и другие условия культивирования in vitro 
могут повлиять на экспрессию генов в эмбрионах [68–70], что также может отразиться 
на фенотипе взрослых потомков, полученных из этих эмбрионов [13]. 
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В нашей работе не обнаружено достоверных отличий в тесте ротарод у потомков B6Cg-
Tg ET с выявленным усилением нейродегенеративного процесса и накоплением альфа-
синуклеина. Возможно, это связано с компенсаторными механизмами ЦНС как в самой 
дофаминергической системе, так и в других структурах мозга [72]. Так, при потере дофа-
миновых нейронов при БП происходят компенсаторные изменения в нигростриарной си-
стеме, связанные с увеличением синтеза и высвобождения дофамина оставшимися клет-
ками, возрастанием эффективности его поглощения [72–74]. У людей с БП двигательные 
дисфункции проявляются на поздних стадиях болезни, когда нарушения в головном мозге 
весьма выражены [75–77], что показано в концепции «моторного резерва» [78].

В недавнем исследовании было подтверждено, что воздействия в пренатальном он-
тогенезе могут иметь большое значение для таких характеристик головного мозга, как 
нейропластичность [4]. Кроме того, существует достаточно много клинических исследо-
ваний, которые направлены на выявление возможной связи применения репродуктивных 
технологий с возможными патологиями ЦНС [5–11]. В связи с объективными сложно-
стями анализа клинических данных авторы этих работ приходят к различным, зачастую 
противоречащим друг другу выводам. В представленной нами работе было показано, что 
у потомков мышей дикого типа С57BL/6, рожденных после применения ВРТ, по дости-
жении возраста 6 месяцев появились признаки, характерные для БП: снижение общей 
плотности нейронов, а также плотности дофаминовых нейронов в КЧС, что сопряже-
но с ухудшением баланса тела в тесте РР. У потомков мышей B6.Cg-Tg (модель БП), 
рожденных после применения ВРТ, наблюдали усиление признака БП: повышенную 
плотность нейронов с альфа-синуклеином в КЧС по сравнению с естественно зачатыми. 
Результаты нашего исследования указывают на возможную связь применения современ-
ных репродуктивных технологий с повышением предрасположенности к развитию ней-
родегенеративного процесса и появлению признаков, характерных для БП.
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Parkinson’s disease (PD) is an age-related neurodegenerative pathology characterized 
by abnormalities of the brain's dopaminergic system, alpha-synucleinopathy and motor 
dysfunction. Possible association of assisted reproductive technologies (ARTs) with 
neuropathologies is discussed in medicine literature, but there is a lack of experimental 
studies addressing this issue. The current study investigates the effects of ARTs, i.e. 
in vitro culture of preimplantation embryos and embryo transfer (ET) on the features 
characteristic for PD in offspring: motor dysfunction, decrease of neuronal density, e.g. 
density of dopaminergic neurons, as well as alpha-synuclein accumulation in substantia 
nigra pars compacta (SNpc). Male offspring of the B6.Cg-Tg strain and C57BL/6 strain 
(hereinafter referred as wild type, WT) obtained by ART (groups B6.Cg-Tg ET and WT 
ET) or by natural mating (groups B6.Cg-Tg CTL and WT CTL) were tested at the age 
of six months. Motor coordination and body balance were studied using the rotarod test; 
the density of neurons, as well as the accumulation of alpha-synuclein in the SNpc were 
assessed by immunohistochemical method. It was shown that B6.Cg-Tg mice obtained 
without ART (B6.Cg-Tg CTL) are characterized by the low density of neurons, including 
dopaminergic ones, as well as the accumulation of alpha-synuclein in SNpc as compared 
to wild type mice (WT CTL). Wild-type offspring obtained by ART (WT ET group) were 
characterized by the impairment in motor coordination and body balance, as well as by the 
decrease in the density of neurons in the SNpc, including dopaminergic ones. Offspring 
of the B6.Cg-Tg strain obtained by ART (B6.Cg-Tg ET group) were characterized by an 
increased accumulation of alpha-synuclein in the SNpc. The results of our study indicate 
possible association between using of modern reproductive technologies and predisposition 
to the neurodegenerative process and manifestations of the features characteristic to PD 
phenotype in offspring.

Keywords: Parkinson’s disease, reproductive technologies, in vitro culture, long-term 
effects, substantia nigra, dopamine neurons, alpha-synuclein


