ОФРоссийский физиологический журнал им. И.М. Сеченова Russian Journal of Physiology

  • ISSN (Print) 0869-8139
  • ISSN (Online) 2658-655X

Способы оценки диастолической упругости левого желудочка

Код статьи
10.31857/S0869813924020069-1
DOI
10.31857/S0869813924020069
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 110 / Номер выпуска 2
Страницы
230-237
Аннотация
Важнейшим свойством миокарда, определяющим наполнение левого желудочка (ЛЖ) сердца, является его растяжимость. Наиболее простым методом ее оценки является соотношение давления и объема ЛЖ в конце диастолы, однако оно может варьировать в широком диапазоне и сильно зависит от условий притока и сопротивления, что затрудняет оценку растяжимости. В работе сопоставлены шесть расчетных индексов диастолической упругости ЛЖ сердца, большинство которых основано на законе Гука, сравнивается их устойчивость, разбросы и коэффициенты корреляции с различными параметрами гемодинамики. Оказалось, что только индекс диастолической упругости № 4, учитывающий прирост упругости ЛЖ в течение диастолы, показал слабую зависимость от фракции выброса, частоты сокращений и других параметров гемодинамики ЛЖ сердца, что обосновывает его применимость при оценке растяжимости при патологии сердца, сопровождающейся различными изменениями гемодинамики.
Ключевые слова
растяжимость миокарда расчетные индексы упругости левого желудочка сердца коннектин (титин)
Дата публикации
15.02.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
42

Библиография

  1. 1. Lalande S, Mueller PJ, Chung CS (2017) The link between exercise and titin passive stiffness. Exp Physiol 102 (9): 1055–1066. https://doi.org/10.1113/EP086275
  2. 2. Emig R, Zgierski-Johnston CM, Timmermann V, Taberner A, Nash MP, Kohl P, Peyronnet R (2021) Passive myocardial mechanical properties: meaning, measurement, models. Biophys Rev 13(5): 587–610. https://doi.org/10.1007/s12551-021-00838-1
  3. 3. Liu W, Wang Z (2019) Current Understanding of the Biomechanics of Ventricular Tissues in Heart Failure. Bioengineering (Basel) 7(1): 2. https://doi.org/10.3390/bioengineering7010002
  4. 4. Lakomkin VL, Abramov AA, Lukoshkova EV, Prosvirnin AV, Kapelko VI (2022) Hemodynamics and cardiac contractile function in type 1 diabetes. Kardiologiia 62(8): 33–37. https://doi.org/10.18087/cardio.2022.8.n1967. PMID: 36066985
  5. 5. Weiss JL, Frederiksen JW, Weisfeldt ML (1976) Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest 58: 751–760. https://doi.org/10.1172/JCI108522
  6. 6. Gillebert TC, Lew WY (1991) Influence of systolic pressure profile on rate of left ventricular pressure fall. Am J Physiol 261(3 Pt 2): H805–H813. https://doi.org/10.1152/ajpheart.1991.261.3.H805
  7. 7. Yano M, Kohno M, Kobayashi S, Obayashi M, Seki K, Ohkusa T, Miura T, Fujii T, Matsuzaki M (2001) Influence of timing and magnitude of arterial wave reflection on left ventricular relaxation. Am J Physiol Heart Circ Physiol 280(4): H1846–H1852. https://doi.org/10.1152/ajpheart.2001.280.4.H1846
  8. 8. Granzier H, Labeit S (2002) Cardiac titin: an adjustable multi-functional spring. J Physiol 541 (Pt 2): 335–342. https://doi.org/10.1113/jphysiol.2001.014381
  9. 9. Li N, Hang W, Shu H, Zhou N (2022) RBM20, Therapeutic Target to Alleviate Myocardial Stiffness via Titin Isoforms Switching in HFpEF. Front Cardiovasc Med 9: 928244. https://doi.org/10.3389/fcvm.2022.928244
  10. 10. Loescher CM, Hobbach AJ, Linke WA (2022) Titin (TTN): from molecule to modifications, mechanics, and medical significance. Cardiovasc Res 118(14): 2903–2918. https://doi.org/10.1093/cvr/cvab328
  11. 11. Tharp C, Mestroni L, Taylor M (2020) Modifications of Titin Contribute to the Progression of Cardiomyopathy and Represent a Therapeutic Target for Treatment of Heart Failure. J Clin Med 9(9): 2770. https://doi.org/10.3390/jcm9092770
  12. 12. Franssen C, González MA (2016) The role of titin and extracellular matrix remodelling in heart failure with preserved ejection fraction. Neth Heart J 24(4): 259–267. https://doi.org/10.1007/s12471-016-0812-z
  13. 13. Капелько ВИ (2022) Роль титина в сократительной функции сердца. Успехи физиол наук 53(2): 1–15. [Kapelko VI (2022) The role of sarcomeric protein titin in the pump function of the heart. Uspehi fiziol nauk 53(2): 1–15. (In Russ)]. https://doi.org/10.31857/S0301179822020059
  14. 14. Chirinos JA, Rietzschel ER, Shiva-Kumar P, De Buyzere ML, Zamani P, Claessens T, Geraci S, Konda P, De Bacquer D, Akers SR, Gillebert TC, Segers P (2014) Effective arterial elastance is insensitive to pulsatile arterial load. Hypertension 64(5): 1022–1031. https://doi.org/10.1161/HYPERTENSIONAHA.114.03696
  15. 15. Weber T (2020) The Role of Arterial Stiffness and Central Hemodynamics in Heart Failure. Int J Heart Fail 2(4): 209–230. https://doi.org/10.36628/ijhf.2020.0029
  16. 16. Avolio AP, Chen SG, Wang RP, Zhang CL, Li MF, O’Rourke MF (1983) Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation 68(1): 50–58. https://doi.org/10.1161/01.cir.68.1.50
  17. 17. Solomon SB, Nikolic SD, Frater RW, Yellin EL (1999) Contraction-relaxation coupling: determination of the onset of diastole. Am J Physiol 277(1): H23–H27. https://doi.org/10.1152/ajpheart.1999.277.1.H23
  18. 18. Sathyanarayanan SP, Oberoi M, Shaukat MHS, Stys T, Stys A (2022) Heart Failure with Preserved Ejection Fraction: Concise Review. SD Med 75(11): 513–517.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека