ОФРоссийский физиологический журнал им. И.М. Сеченова Russian Journal of Physiology

  • ISSN (Print) 0869-8139
  • ISSN (Online) 2658-655X

ЭФФЕКТ ОЗОНА НА КИСЛОРОДТРАНСПОРТНУЮ ФУНКЦИЮ КРОВИ И СОДЕРЖАНИЕ ГАЗОТРАНСМИТТЕРОВ (МОНООКСИД АЗОТА И СЕРОВОДОРОДА) У КРЫС

Код статьи
S2658655X25090011-1
DOI
10.7868/S2658655X25090011
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 111 / Номер выпуска 9
Страницы
1441-1452
Аннотация
Озонотерапия является высокоэффективным методом реабилитации организма при различных патологиях, эффекты которой могут быть связаны с ее влиянием на механизмы транспорта кислорода крови. Цель данной работы – исследование влияния озона в различных концентрациях на кислородтранспортную функцию крови, содержание 2,3-дифосфоглицерата и аденозинтрифосфата, систему газотрансмиттеров (монооксид азота и сероводород) у крыс. Эксперимент выполнен на белых беспородных крысах-самцах ( = 56), которых разделили на 4 группы: контрольная, получавшая внутрибрюшинно 1.0 мл 0.9%-ного раствора NaCl в течение 10 суток, и 3 опытных, которым на протяжении 10 суток осуществлялось введение 0.9%-ного раствора NaCl с концентрацией озона 1, 10 и 100 мкг/кг массы животного соответственно. Определяли показатели кислородтранспортной функции крови, содержание 2,3-дифосфоглицерата и аденозинтрифосфата, нитрат/нитритов и сероводорода. У животных, которые получали озон в концентрации 10 мкг/кг, наблюдалось увеличение PO, SO, P50, 2,3-дифосфоглицерата, аденозинтрифосфата и газотрансмиттеров (монооксид азота и сероводорода) в сравнении с контролем. При использовании озона в минимальных и максимальных концентрациях изменения показателей кислородевязывающих свойств крови не отмечались. Выявленный эффект озона (в дозе 10 мкг/кг) на кислородтранспортную функцию крови крыс, проявляющийся в уменьшении средства гемоглобина к кислороду, реализуется через увеличение монооксида азота и сероводорода, способствующих росту таких модуляторов, как 2,3-дифосфоглицерат и аденозинтрифосфат.
Ключевые слова
озон кровь кислород газотрансмиттер монооксид азота сероводород 2,3-дифосфоглицерат
Дата публикации
21.12.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
19

Библиография

  1. 1. Халилова АС-А, Иванов СВ (2020) Озонотерапия – способ улучшения состояния организма на тканевом уровне. Применение в медицине и сочетании с санаторно-курортным лечением в Крыму (обзор литературы). Трансляц мед 7 (3): 38–44. @@ Khalilova AS-A, Ivanov S (2020) Ozone therapy – a way to improve the body's condition at the tissue level. Application in medicine and in combination with spa treatment in Crimea (literature review). Translat Med 7 (3): 38–44. (In Russ).
  2. 2. Аширметов АХ, Мавлянов ИР, Мавлянов ЗИ (2021) О возможности применения озона в лечении COVID-19. Juvenis Scientia 7 (3): 5–10. @@ Ashyrmetov AKh, Mavlyanov IR, Mavlyanov ZI (2021) On the possibility of using ozone in the treatment of COVID-19. Juvenis Scientia 7 (3): 5–10. (In Russ).
  3. 3. Серов ВН (2022) Методы системного применения озона в медицинской практике. Биорадикалы и антиоксиданты 9(1-2): 41–76. @@ Serov VN (2022) Methods of systemic application of ozone in medical practice. Bioradicals and Antioxidants 9(1-2): 41–76. (In Russ).
  4. 4. Jian-Xiong An, Guo-Ping Wu, Kun Niu, You-Ping Wei, Hui Liu, Xin-You Gao, Jian-Ping Wu, Yong Wang, Harald Renz, John P. Williams (2022) Treatment of Femoral Head Osteonecrosis with Ozone Therapy: Pilot Trial of a New Therapeutic Approach. Pain Physician 25: 43–54.
  5. 5. Зинчук ВВ, Билецкая ЕС (2020) Эффект озона на кислородтранспортную функцию крови при различных режимах воздействия в опытах in vitro. Биофизика 65(5): 915–919. @@ Zinchuk VV, Biletskaya ES (2020) The effect of ozone on the oxygen transport function of blood under various exposure conditions in vitro experiments. Biophysics 65(5): 915–919. (In Russ).
  6. 6. Burtis CA, Ashwood ER (1999) Tietz Textbook of Clinical Chemistry. Philadelphia. WB Saunders 37(11-12): 1136.
  7. 7. Виноградова ИЛ, Багрянцева СЮ (1980) Метод одновременного определения 2,3-ДФГ и АТФ в эритроцитах. Лаб дело 7: 424–426. @@ Vinogradova IL, Bagryantseva S'u (1980) Method for simultaneous determination of 2,3-DPG and ATP in erythrocytes. Lab Delo 7: 424–426. (In Russ).
  8. 8. Satomi Kagota, Yu Yamaguchi, Kazuki Nakamura, Kazumasa Shinozuka, Masaru Kunitomo (2004) Chronic nitric oxide exposure alters the balance between endothelium-derived relaxing factors released from rat renal arteries: prevention by treatment with NOX-100, a NO scavenger. Life Sci 74(22): 2757–2767.
  9. 9. Norris EJ, Culberson CR, Narasimhan S, Clemens MG (2011) The liver as central regulator of hydrogen sulfide. Shock 36(3): 242–250.
  10. 10. Kuroda K, Yamashita M, Murahata Y, Azuma K, Osaki T, Tsuka T, Ito N, Imagawa T, Okamoto Y (2018) Use of ozonated water as a new therapeutic approach to solve current concerns around antitumor treatment. Exp Ther Med 16(3): 1597–1602.
  11. 11. Yiebahn-Haenslera R, Fernández O-L (2024) Ozone in medicine. The low-dose ozone concept. The redox-bioregulatoryeffect as prominent biochemical mechanism and the role of glutathione. Ozone: Sci & Engineer 46(3): 267–279.
  12. 12. Зинчук ВВ, Глупкина НВ (2023) Сродство гемоглобина к кислороду при коронавирусной инфекции: новые грани известной проблемы. Рос физиол журн им ИМ Сеченова 109(12): 1780–1798. @@ Zinchuk VY, Glukhtia NY (2023) Hemoglobin affinity for oxygen in coronavirus infection: new aspects of a well-known problem. Russ J Physiol 109(12): 1780–1798. (In Russ).
  13. 13. Перетягин СП (2012) Оценка эффекта различных доз озона на процессы липопероксидации и кислородообеспечение крови in vitro. Мед альманах 2(21): 101–104. @@ Pereyagin SP (2012) Evaluation of the effect of different doses of ozone on lipid peroxidation processes and blood oxygen supply in vitro. Med Almanach 2(21): 101–104. (In Russ).
  14. 14. Ерофеева ЕА, Гелианин ДБ, Розенберг ГС (2023) Современная концепция гормозиса: обзор проблемы и значение для экологии. Успехи совр биол 143(6): 553–564. @@ Erofeeva EA, Gelashvili DB, Rosenberg GS (2023) The modern concept of hormesis: a review of the problem and its significance for ecology. Advances Modern Biol 143(6): 553–564. (In Russ).
  15. 15. Wang G, Huang Y, Zhang N, Liu W, Wang C, Zhu X, Ni X (2021) Hydrogen Sulfide Is a Regulatory Hemoglobin Oxygen-Carrying Capacity via Controlling 2,3-BPG Production in Erythrocytes. Oxid Med Cell Longev 2021: 1–16.
  16. 16. Jensen FB (2004) Red blood cell pH, the Bohr effect and other oxygenationlinked phenomena in blood O and CO transport. Acta Physiol Scand 182(3): 215–227.
  17. 17. Mattecci E, Cocci F, Pellegrini L, Gregori G, Navalesi R, Giampietro O (1992) Erythrocyte ATPase enzymes family in normal people. Eur J Clin Invest 22(4): 11–18.
  18. 18. Sun K, Zhang Y, D’Alessandro A, Nemkov T, Song A, Wu H, Liu H, Adebiyi M, Huang A, Wen Y, Bogdanov MY, Vila A, O’Brien J, Kellens R, Dowhan W, Subudhi AW, Houlen SJ-V, Julian CG, Lovering AT, Safo M, Hansen KC, Roach RC, Xia Y (2016) Sphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release for adaptation to high-altitude hypoxia. Nat Communicat 2016: 1–13.
  19. 19. Zhou X, Su W, Bao Q, Cui Y, Li X, Yang Y, Yang Ch, Wang Ch, Jiao L, Chen D, Huang J (2024) Nitric oxide ameliorates the effects of hypoxia in mice by regulating oxygen transport by hemoglobin. High Alt Med Biol 25(3): 174–185.
  20. 20. Simone G, Masi A, Sbardella D, Ascensi P, Coletta M (2024) Nitric oxide binding geometry in heme-proteins: relevance for signal transduction. Antioxidants 136: 1–21.
  21. 21. Zagrean-Tiza C, Igescu I, Lupan A, Silaghi-Dumitrescu R (2024) A study of the molecular interactions of hemoglobin with diverse classes of therapeutic agents. Inorgan Chim Acta 567: 1–16.
  22. 22. Kelm V, Rath J (2001) Endothelial dysfunction in human coronary circulation: relevance of the L-arginine-NO pathway. Basic Res Cardiol 96: 107–127.
  23. 23. Chen H, Xing B, Liu X, Zhan B, Zhou J, Zhu H, Chen Z (2008) Ozone oxidative preconditioning protects the rat kidney from reperfusion injury: the role of nitric oxide. J Surg Res 149: 287–295.
  24. 24. Colakerol A, Temiz MZ, Tavukcu HH, Aykan S, Ozsoy S, Sahan A, Kandirali E, Semercioz A (2019) Effects of ozone treatment on penile erection capacity and nitric oxide synthase levels in diabetic rats. Int J Import Res 33(5): 1–8.
  25. 25. Borges FS, Meyer PF, Jahara RS, Carreiro EM, Antonuzzo PE, Picariello F, Palma C (2021) Fundamentals of the use of ozone therapy in the treatment of aesthetic disorders: a review. J Biosci Med 9(12): 40–70.
  26. 26. Sun C-W, Yang J, Kleschyov AL, Zhuge Zh, Carlström M, Pernow J, Wajih N, Isbell TS, Oh J-Y, Cabrales P, Tsai AG, Townes T, Kim-Shapiro DB, Patel RP, Lundberg JO (2019) Hemoglobin beta93 cysteine is not required for export of nitric oxide bioactivity from the red blood cell. Circulation 139(23): 2654–2663.
  27. 27. Stomberski CT, Hess DT, Stamler JS (2019) Protein S-Nitrosylation: determinants of specificity and enzymatic regulation of S-nitrosothiol-based signaling. Antioxid Redox Signal 30(10): 1331–1351.
  28. 28. Zhu XY, Liu SJ, Liu YJ, Wang S, Ni X (2010) Glucocorticoids suppress cystathionine gamma-lyase expression and HS production in lipopolysaccharide-treated macrophages. Cell Mol Life Sci 67: 1119–1132.
  29. 29. Зинчук ВВ (2021) Кислородтранспортная функция крови и газотрансмиттер сероводород. Успехи физиол наук 52(3): 41–55. @@ Zinchuk VV (2021) Oxygen transport function of blood and gas transmitter hydrogen sulfide. Advance Physiol Sci 52(3): 41–55. (In Russ).
  30. 30. Гусакова СВ, Смаглий ЛВ, Бирулина ЮГ, Ковалев ИВ, Носарев АВ, Петрова ИВ, Реутов ВП (2017) Молекулярные механизмы действия газотрансмиттеров NO, CO и HS в гладкомышечных клетках и влияние NO-генернующих соединений (нитратов и нитритов) на среднюю продолжительность жизни. Успехи физиол наук 48(1): 24–52. @@ Gusakova SV, Smaglii LV, Birulina YuG, Kovalev IV, Nosarev AV, Petrova IV, Reutov VP (2017) Molecular mechanisms of action of NO, CO, and HS gas transmitters in smooth muscle cells and the effect of NO-generating compounds (nitrates and nitrites) on average life expectancy. Advance Physiol Sci 48(1): 24–52. (In Russ).
  31. 31. Nagpure BY, Bian J-S (2016) Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System. Oxidat Med Cell Longev 2016: 1–16.
  32. 32. Yong Q-C, Hu L-F, Wang S (2010) Hydrogen sulfide interacts with nitric oxide in the heart: possible involvement of nitroxyl. Cardiovasc Res 88(3): 482–491.
  33. 33. Liu Y-H, Lu M, Hu L-F (2012) Hydrogen sulfide in the mammalian cardiovascular system. Antioxidant Redox Signal 17(1): 141–185.
  34. 34. Zhu Zh, Chambers S, Zeng Y, Bhatia M (2022) Gases in sepsis: novel mediators and therapeutic targets. Int J Mol Sci 23: 1–19.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека