- PII
- S2658655X25090096-1
- DOI
- 10.7868/S2658655X25090096
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 111 / Issue number 9
- Pages
- 1558-1575
- Abstract
- Under physiological conditions, chemical synapses, including neuromuscular junctions, operate rhythmically at different frequencies depending on the functional type of muscle and the state of synaptic contact. Calcium ions (Ca) entering the axoplasm through voltage-gated Ca channels during each action potential activate exocytosis of synaptic vesicles and play a key role in modulating the secretory process. The endoplasmic reticulum (ER), which can release Ca ions via Ca-dependent release, may contribute significantly to intracellular Ca dynamics. Optical recording techniques using Ca-sensitive fluorescent dyes are used to monitor changes in intracellular Ca. However, such an evaluation must pay special attention to the dye's binding characteristics with Ca ions, specifically its affinity, because the degree of dye saturation affects the parameters of the Ca response being investigated. In this study, the low-affinity dye Magnesium Green was used to analyze changes in the intracellular Ca ions concentration in the neuromuscular synapse m. cutaneus pectoris of the frog during rhythmic stimulation, which allows correct assessment of Ca signals. With increasing frequency of motor nerve stimulation, the smooth increase at 20 Hz of Ca response was replaced by a biphasic increase at 50 Hz and a sharp increase at 70 Hz. This indicates the inclusion of additional Ca sources, which may be the ER. Blocking ryanodine and inositol receptors abolished the increase in Ca response at higher frequencies of nerve stimulation. Blocking Ca ATPases ER (SERCA) resulted in a dramatic increase in the Ca response and eliminated its multiphasic character. It is shown that the change in Ca transient reflects the accumulation of intracellular Ca in the axoplasm and depends on the activity of SERCA, ryanodine and inositol receptors. The use of a low affinity fluorescent Ca dye makes it possible to track the contribution of these systems to the formation of the intracellular concentration of the main ions that determine the process of neurosecretion.
- Keywords
- ионы кальция нервно-мышечное соединение рианодиновые рецепторы инозительные рецепторы кальциевые ATФазы
- Date of publication
- 21.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Katz B, Miledi R (1965) The Effect of Calcium on Acetylcholine Release from Motor Nerve Terminals. Proc R Soc B Biol Sci 161: 496–503. https://doi.org/10.1098/rspb.1965.0017
- 2. Schweizer FE, Betz H, Augustine GJ (1995) From vesicle docking to endocytosis: Intermediate reactions of exocytosis. Neuron 14: 689–696. https://doi.org/10.1016/0896-6273 (95)90213-9
- 3. Narita K, Akita T, Osanai M, Shirasaki T, Kijima H, Kuba K (1998) A Ca-induced Ca Release Mechanism Involved in Asynchronous Exocytosis at Frog Motor Nerve Terminals. J Gen Physiol 112: 593–609. https://doi.org/10.1085/jgp.112.5.593
- 4. Suzuki S ichi, Osanai M, Murase M, Suzuki N, Ito K, Shirasaki T, Narita K, Ohnuma K, Kuba K, Kijima H (2000) Ca dynamics at the frog motor nerve terminal. Pflugers Arch Eur J Physiol 440: 351–365. https://doi.org/10.1007/S004240000278
- 5. Narita K, Suzuki N, Himi N, Murayama T, Nakagawa T, Okabe N, Nakamura-Maruyama E, Hayashi N, Sakamoto I, Miyamoto O, Kuba K (2019) Effects of intravesicular loading of a Ca chelator and depolymerization of actin fibers on neurotransmitter release in frog motor nerve terminals. Eur J Neurosci 50: 1700–1711. https://doi.org/10.1111/ejn.14353
- 6. Galante M, Marty A (2003) Presynaptic Ryanodine-Sensitive Calcium Stores Contribute to Evoked Neurotransmitter Release at the Basket Cell-Purkinje Cell Synapse. J Neurosci 23: 11229–11234. https://doi.org/10.1523/JNEUROSCI.23-35-11229.2003
- 7. Emptage NJ, Reid CA, Fine A (2001) Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca entry, and spontaneous transmitter release. Neuron 29: 197–208. https://doi.org/10.1016/S0896-6273 (01)00190-8
- 8. Conti R, Tan YP, Llano I (2004) Action Potential-Evoked and Ryanodine-Sensitive Spontaneous Ca Transients at the Presynaptic Terminal of a Developing CNS Inhibitory Synapse. J Neurosci 24: 6946–6957. https://doi.org/10.1523/JNEUROSCI.1397-04.2004
- 9. Smith AB, Cunnane TC (1996) Ryanodine-sensitive calcium stores involved in neurotransmitter release from sympathetic nerve terminals of the guinea-pig. J Physiol 497: 657–664. https://doi.org/10.1113/JPHYSIOL.1996.SP021797
- 10. Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85: 201–279. https://doi.org/10.1152/physrev.00004.2004
- 11. McGraw CF, Somlyo AV, Blaustein MP (1980) Localization of calcium in presynaptic nerve terminals. An ultrastructural and electron microprobe analysis. J Cell Biol 85: 228–241. https://doi.org/10.1083/JCB.85.2.228
- 12. Hartter DE, Burton PR, Laveri LA (1987) Distribution and calcium-sequestering ability of smooth endoplasmic reticulum in olfactory axon terminals of frog brain. Neuroscience 23: 371–386. https://doi.org/10.1016/0306-4522 (87)90297-1
- 13. Bouchard R, Pattarini R, Geiger JD (2003) Presence and functional significance of presynaptic ryanodine receptors. Prog Neurobiol 69: 391–418. https://doi.org/10.1016/S0301-0082 (03)00053-4
- 14. Castelón OJ, Apkarian RP (1992) Conventional and high resolution scanning electron microscopy of outer and inner surface features of cerebellar nerve cells. J Submicrosc Cytol Pathol 24: 549–562.
- 15. Blaustein MP, McGraw CF, Somlyo AV, Schweitzer ES (1980) How is the cytoplasmic calcium concentration controlled in nerve terminals? J Physiol (Paris) 76: 459–470.
- 16. Westrum LE, Gray EG (1986) New observations on the substructure of the active zone of brain synapses and motor endplates. Proc R Soc London Ser B Biol Sci 229: 29–38. https://doi.org/10.1098/rspb.1986.0072
- 17. Балезина ОП, Богacheва ПО, Орлова ТЮ (2007) Влияние блокаторов L-типа кальциевых каналов на активность вновь образованных синапсов у мышей. Bull Exp Biol Med 143: 171–174. @@Balczina OP, Bogacheva PO, Orlova TY (2007) Effect of L-type calcium channel blockers on activity of newly formed synapses in mice. Bull Exp Biol Med 143: 171–174. https://doi.org/10.1007/s10517-007-0041-y
- 18. Балезина ОП, Букин АН, Лаптева ВИ (2001) Влияние дантролена и рианодина на вызванную активность нервно-мышечных синапсов у мышей. 87: 1511–1517. @@Balezina OP, Bukin AN, Lapteva VI (2001) Effects of dantrolene and ryanodine on the evoked activity of neuromuscular synapses in mice. Russ J Physiol 87: 1511–1517. (In Russ)
- 19. Zucker RS, Regehr WG (2002) Short-Term Synaptic Plasticity. Annu Rev Physiol 64: 355–405. https://doi.org/10.1146/annurev.physiol.64.092501.114547
- 20. Narita K, Akita T, Hachisuka J, Huang SM, Ochi K, Kuba K (2000) Functional coupling of Ca channels to ryanodine receptors at presynaptic terminals: Amplification of exocytosis and plasticity. J Gen Physiol 115: 519–532. https://doi.org/10.1085/JGP.115.4.519
- 21. Verkhratsky A (2004) Endoplasmic reticulum calcium signaling in nerve cells. Biol Res 37: 693–699. https://doi.org/10.4067/s0716-97602004000400027
- 22. Khuzakhmetova VF, Samigullin DV, Bukharaeva EA (2014) The role of presynaptic ryanodine receptors in regulation of the kinetics of the acetylcholine quantal release in the mouse neuromuscular junction. Biochem Suppl Ser A Membr Cell Biol 8: 144–152. https://doi.org/10.1134/S199074781305005X
- 23. Tazerart S, Vinay L, Brocard F (2008) The persistent sodium current generates pacemaker activities in the central pattern generator for locomotion and regulates the locomotor rhythm. J Neurosci 28: 8577–8589. https://doi.org/10.1523/JNEUROSCI.1437-08.2008
- 24. Bullen A, Saggan P (1999) Optical Recording from Individual Neurons in Culture. In: Windhorst U, Johansson H (eds) Modern Techniques in Neuroscience Research. Springer, Berlin, pp 89–126.
- 25. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440–3450. https://doi.org/10.1016/S0021-9258 (19)83641-4
- 26. Tsien RY (1989) Fluorescent Indicators of Ion Concentrations. Methods Cell Biol 30: 127–156. https://doi.org/10.1016/S0091-679X (08)60978-4
- 27. Adams SR (2010) How Calcium Indicators Work. Cold Spring Harb Protoe 2010(3): pdb.top70. https://doi.org/10.1101/pdb.top70
- 28. Tank DW, Regehr WG, Delaney KR (1995) A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement. J Neurosci 15: 7940–7952. https://doi.org/10.1523/JNEUROSCI.15-12-07940.1995
- 29. Regehr WG, Atluri PP (1995) Calcium transients in cerebellar granule cell presynaptic terminals. Biophys J 68: 2156–2170. https://doi.org/10.1016/S0006-3495 (95)80398-X
- 30. Samigullin D, Fatikhov N, Khaziev E, Skorinkin A, Nikolsky E, Bukharaeva E (2015) Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes. Front Synaptic Neurosci 6: 29. https://doi.org/10.3389/FNSYN.2014.00029
- 31. Samigullin DV, Bukharaeva EA (2025) Monitoring presynaptic calcium dynamics with membrane-impermeant fluorescent indicators in motor nerve endings. Biophys Rev. https://doi.org/10.1007/s12551-025-01336-4
- 32. Iyshedskiy A, Allana T, Lin J-W (2000) Analysis of Presynaptic Ca Influx and Transmitter Release Kinetics during Facilitation at the Inhibitor of the Crayfish Neuromuscular Junction. J Neurosci 20: 6326–6332. https://doi.org/10.1523/JNEUROSCI.20-17-06326.2000
- 33. Iyshedskiy A, Lin JW (2000) Presynaptic Ca influx at the inhibitor of the crayfish neuromuscular junction: a photometric study at a high time resolution. J Neurophysiol 83: 552–562. https://doi.org/10.1152/jn.2000.83.1.552
- 34. Borst JGG, Sakmann B (1998) Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem. J Physiol 506: 143–157. https://doi.org/10.1111/j.1469-7793.1998.143bx.x
- 35. Peng Y, Zucker RS (1993) Release of LHRH is linearly related to the time integral of presynaptic Ca elevation above a threshold level in bullfrog sympathetic ganglia. Neuron 10: 465–473. https://doi.org/10.1016/0896-6273 (93)90334-N
- 36. Wu LG, Betz WJ (1996) Nerve activity but not intracellular calcium determines the time course of endocytosis at the frog neuromuscular junction. Neuron 17: 769–779. https://doi.org/10.1016/s0896-6273 (00)80208-1
- 37. Samigullin DV, Khaziev EF, Zhilyakov NV, Bukharaeva EA, Nikolsky EE (2017) Loading a Calcium Dye into Frog Nerve Endings Through the Nerve Stump: Calcium Transient Registration in the Frog Neuromuscular Junction. J Vis Exp (125): 55122. https://doi.org/10.3791/55122
- 38. Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82: 893–922. https://doi.org/10.1152/physrev.00013.2002
- 39. De Smet P, Parys JB, Callewaert G, Weidema AF, Hill E, De Smedt H, Erneux C, Sorrentino V, Misstaan L (1999) Xestospongin C is an equally potent inhibitor of the inositol 1,4,5-trisphosphate receptor and the endoplasmic-reticulum Ca pumps. Cell Calcium 26: 9–13. https://doi.org/10.1054/CECA.1999.0047
- 40. Castonguay A, Robitaille R (2002) Xestospongin C is a potent inhibitor of SERCA at a vertebrate synapse. Cell Calcium 32: 39–47. https://doi.org/10.1016/s0143-4160 (02)00093-3
- 41. Kubota M, Narita K, Murayama T, Suzuki S, Soga S, Usukura J, Ogawa Y, Kuba K (2005) Type-3 ryanodine receptor involved in Ca-induced Ca release and transmitter exocytosis at frog motor nerve terminals. Cell Calcium 38: 557–567. https://doi.org/10.1016/j.eeca.2005.07.008
- 42. Suzuki S, Osanai M, Mitsumoto N, Akita T, Narita K, Kijima H, Kuba K (2002) Ca -Dependent Ca Clearance Via Mitochondrial Uptake and Plasmalemmal Extrusion in Frog Motor Nerve Terminals. J Neurophysiol 87: 1816–1823. https://doi.org/10.1152/jn.00456.2001
- 43. Soga-Sakakibara S, Kubota M, Suzuki S, Akita T, Narita K, Kuba K (2010) Calcium dependence of the priming, activation and inactivation of ryanodine receptors in frog motor nerve terminals. Eur J Neurosci 32: 948–962. https://doi.org/10.1111/j.1460-9568.2010.07381.x
- 44. Sinha SR, Wu L-G, Saggan P (1997) Presynaptic Calcium Dynamics and Transmitter Release Evoked by Single Action Potentials at Mammalian Central Synapses. Biophys J 72: 637–651. https://doi.org/10.1016/S0006-3495 (97)78702-2
- 45. Sala F, Hernández-Cruz A (1990) Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties. Biophys J 57: 313–324. https://doi.org/10.1016/S0006-3495 (90)82533-9
- 46. Lin J-W, Fu Q, Allana T (2005) Probing the endogenous Ca buffers at the presynaptic terminals of the crayfish neuromuscular junction. J Neurophysiol 94: 377–386. https://doi.org/10.1152/jn.00617.2004
- 47. Neher E (1998) Usefulness and limitations of linear approximations to the understanding of Ca signals. Cell Calcium 24: 345–357. https://doi.org/10.1016/S0143-4160 (98)90058-6
- 48. Narita K, Akita T, Osanai M, Shirasaki T, Kijima H, Kuba K (1998) A Ca-induced Ca Release Mechanism Involved in Asynchronous Exocytosis at Frog Motor Nerve Terminals. J Gen Physiol 112: 593–609. https://doi.org/10.1085/JGP.112.5.593
- 49. Castonguay A, Robitaille R (2001) Differential regulation of transmitter release by presynaptic and glial Ca internal stores at the neuromuscular synapse. J Neurosci 21: 1911–1922. https://doi.org/10.1523/jneurosci.21-06-01911.2001
- 50. Bennett MR, Farnell L, Gibson WG, Dickens P (2007) Mechanisms of calcium sequestration during facilitation at active zones of an amphibian neuromuscular junction. J Theor Biol 247: 230–241. https://doi.org/10.1016/j.jtbi.2007.03.022
- 51. John LM, Lechleiter JD, Camacho P (1998) Differential Modulation of SERCA2 Isoforms by Calreticulin. J Cell Biol 142: 963. https://doi.org/10.1083/JCB.142.4.963
- 52. He XP, Yang F, Xie ZP, Lu B (2000) Intracellular Ca and Ca/Calmodulin-Dependent Kinase II Mediate Acute Potentiation of Neurotransmitter Release by Neurotrophin-3. J Cell Biol 149: 783. https://doi.org/10.1083/JCB.149.4.783